
- •Означення та приклади подій: випадкова, достовірна, неможлива, елементарна, складна.
- •Означення та приклад повної групи подій та простору елементарних подій.
- •Класичне означення ймовірності випадкової події.
- •Сформулювати аксіоми класичної теорії ймовірностей.
- •Дати означення та вказати властивості перестановки, сполучення, комбінації елементів.
- •Дати означення відносної частоти появи події.
- •Дати геометричне та статистичне означення ймовірності.
- •Дати визначення умовної ймовірності.
- •Формула множення ймовірностей для залежних та незалежних подій.
- •Формула для обчислення появи хоча б однієї події .
- •Формула повної ймовірності.
- •Формули Байєса.
- •Означення експерименту за схемою Бернуллі.
- •Формула Бернуллі для обчислення ймовірностей, умова використання. Наслідки.
- •Найімовірніше число появ події в схемі Бернуллі.
- •Сформулювати локальну теорему Муавра-Лапласа.
- •Властивості функції Лапласа:
- •Означення випадкової величини, дискретної та неперервної випадкових величин.
- •Закон розподілу випадкової величини.
- •Інтегральна функція розподілу випадкової величини: означення. Властивості.
- •Диференціальна функція розподілу (щільність розподілу) випадкової величини: означення. Властивості.
- •Математичне сподівання випадкової величини: означення, властивості.
- •Дисперсія та середньоквадратичне відхилення випадкової величини: означення, властивості.
- •Властивості дисперсії
- •Мода, медіана випадкової величини.
- •Початкові та центральні моменти.
- •Асиметрія, ексцес.
- •Означення багатовимірної випадкової величини.
- •Означення закону розподілу багатовимірної випадкової величини.
- •Основні числові характеристики для системи двох дискретних випадкових величин.
- •Коефіцієнт кореляції та його властивості.
- •Функція розподілу ймовірностей та щільність ймовірностей системи
- •Двовимірний нормальний закон розподілу.
- •Закон розподілу Бернулі
- •Біноміальний закон розподілу двв. Числові характеристики.
- •Пуасонівський закон розподілу двв, числові характеристики.
- •Геометричний закон розподілу двв, числові характеристики.
- •Гіпергеометричний закон розподілу двв, числові характеристики.
- •Рівномірний закон розподілу нвв.
- •Нормальний закон розподілу.
- •Показниковий закон та його використання в теорії надійності та теорії черг.
- •Розподіл
- •Розподіл Стьюдента. Розподіл Фішера. (45-46)
- •Правило трьох сигм. Логарифмічний нормальний закон.
- •Функції одного дискретного випадкового аргументу.
- •.Числові характеристики функції одного дискретного випадкового аргументу.
- •Функції неперервного випадкового аргументу та їх числові характеристики.
- •Функції двох випадкових аргументів та їх числові характеристики.
- •Числові характеристики функції дискретного випадкового аргументу
- •Нерівності Чебишева та їх значення.
- •Теорема Чебишева.
- •Теорема Бернуллі.
- •Центральна гранична теорема теорії ймовірностей ( теорема Ляпунова) та її використання у математичній статистиці.
- •Предмет і задачі математичної статистики.
- •Утворення вибірки. Генеральна та вибіркова сукупність.
- •Статистичні розподіли вибірок.
- •Емпірична функція розподілу, гістограма та полігон.
- •Числові характеристики: вибіркова середня, дисперсія вибірки, середньоквадратичне відхилення.
- •Мода й медіана, емпіричні початкові та центральні моменти, асиметрія та ексцес.
- •Дати визначення статистичної оцінки.
- •Точкові та інтервальні статистичні оцінки.
- •Дати визначення довірчого інтервалу.
- •Що таке нульова та альтернативна статистичні гіпотези.
- •Перевірка (правдивості нульової) гіпотези про нормальний закон розподілу ознаки генеральної сукупності.
- •Емпіричні та теоретичні частоти.
- •Критерії узгодження Пірсона та Колмогорова.
- •Помилки першого та другого роду.
- •Статистичний критерій. Критична область.
- •Дати означення моделі експерименту.
- •Дати поняття одно факторний аналіз.
- •Загальна дисперсія, між групова та внутрішньогрупова дисперсії.
- •. Поняття про функціональну, статистичну та кореляційну залежності.
- •Рівняння лінійної регресії. Довірчий інтервал для лінії регресії
- •Вибірковий коефіцієнт кореляції.
- •Множинна регресія, множинний коефіцієнт кореляції та його властивості.
- •Нелінійна регресія.
- •85) Визначення та приклади ланцюгів Маркова.
- •Інтуїтивне визначення
- •Формальне визначення
- •Граф переходів ланцюга Маркова
- •86) Ймовірність переходу за n кроків.
- •87) Замкнуті множини станів.
- •88) Класифікація станів. Неповоротний стан.
- •1. Ергодичний стан
- •2. Нестійкі стани
- •3. Поглинальні стани
- •89) Ергодична властивість неперіодичних ланцюгів. Стаціонарний розподіл.
- •90) Періодичні ланцюги.
- •91) Загальний марковський процес (Ланцюг Маркова з неперервним часом).
- •92) Гранична поведінка перехідних ймовірностей ланцюга Маркова.
- •93) Гілчастий процес.
- •94) Алгебраїчний підхід вивчення скінченних ланцюгів Маркова.
- •96) Випадковий проце, стаціонарний у широкому сенсі.
- •97) Аналіз кореляційної функції. Ергодичність.
- •100) Рівняння Колмогорова - Чепмена
Дисперсія та середньоквадратичне відхилення випадкової величини: означення, властивості.
Математичне сподівання не дає достатньо повної інформації про випадкову величину, оскільки одному й тому самому значенню М (Х) може відповідати безліч випадкових величин, які будуть різнитися не лише можливими значеннями, а й характером розподілу і самою природою можливих значень.
В
разі рівності математичних сподівань
(М (X) = М (Y) = 0) випадкові величини Х і Y
мають тенденцію до коливань відносно
М (X) та М (Y), причому Y має більший
розмах розсіювання відносно М (Y), ніж
випадкова величина Х відносно М (Х).
Тому математичне сподівання називають
центром розсіювання. Для вимірювання
розсіювання вводиться числова
характеристика, яку називають дисперсією.
Дисперсією випадкової величини Х
називається математичне сподівання
квадрата відхилення цієї величини
.
Для дискретної випадкової величини Х
дисперсія
;для
неперервної
.
Якщо Х
[а; b], то
.
Властивості дисперсії
1. Якщо С — стала величина, то D(C)=0.
2.
.
3. Якщо А і В — сталі
величини, то
.
Дисперсію можна
обчислити і за такою формулою:
Дисперсія не може
бути від’ємною величиною
.
Середнім
квадратичним відхиленням випадкової
величини Х називають корінь квадратний
із дисперсії:
.
Мода, медіана випадкової величини.
Модою (Мo) дискретної випадкової величини Х називають те її можливе значення, якому відповідає найбільша ймовірність появи. Модою для неперервної випадкової величини Х називають те її можливе значення, якому відповідає максимальне значення щільності ймовірності: f (Mо) = max.
Якщо випадкова величина має одну моду, то такий розподіл імовірностей називають одномодальним; якщо розподіл має дві моди — двомодальним і т. ін. Існують і такі розподіли, які не мають моди. Їх називають антимодальними.
Медіаною (Ме)
неперервної випадкової величини Х
називають те її значення, для якого
виконуються рівність імовірностей
подій:
Початкові та центральні моменти.
Узагальненими числовими характеристиками випадкових величин є початкові та центральні моменти.
Початковим моментом
k-го
порядку випадкової величини Х
називають математичне сподівання
величини Х
k:
.
Коли
коли k
= 2,
і т. д.
Для дискретної
випадкової величини Х
;
для неперервної
.
Якщо Х
[а;
b], то
.
Центральним моментом k-го порядку називається математичне сподівання від (Х – М(Х))k:
Коли
коли k
= 2,
;
коли k =
3,
коли k =
4,
.
Для дискретної
випадкової величини
для неперервної
Якщо Х
[а;
b], то
.
Асиметрія, ексцес.
Третій центральний
момент характеризує асиметрію закону
розподілу випадкової величини. Якщо 3
= 0, то випадкова величина Х
симетрично розподілена відносно М
(Х).
Оскільки 3
має розмірність
випадкової величини в кубі, то вводять
безрозмірну величину
— коефіцієнт асиметрії:
.
Центральний момент
четвертого порядку використовується
для визначення ексцесу, що характеризує
плосковершинність, або гостровершинність
щільності ймовірності f
(x).
Ексцес обчислюється за формулою
Зауважимо, що число 3 віднімається ось чому. Для центрального закону розподілу, так званого нормального закону, виконується рівність:
Отже, Еs
= 0.