
- •Означення та приклади подій: випадкова, достовірна, неможлива, елементарна, складна.
- •Означення та приклад повної групи подій та простору елементарних подій.
- •Класичне означення ймовірності випадкової події.
- •Сформулювати аксіоми класичної теорії ймовірностей.
- •Дати означення та вказати властивості перестановки, сполучення, комбінації елементів.
- •Дати означення відносної частоти появи події.
- •Дати геометричне та статистичне означення ймовірності.
- •Дати визначення умовної ймовірності.
- •Формула множення ймовірностей для залежних та незалежних подій.
- •Формула для обчислення появи хоча б однієї події .
- •Формула повної ймовірності.
- •Формули Байєса.
- •Означення експерименту за схемою Бернуллі.
- •Формула Бернуллі для обчислення ймовірностей, умова використання. Наслідки.
- •Найімовірніше число появ події в схемі Бернуллі.
- •Сформулювати локальну теорему Муавра-Лапласа.
- •Властивості функції Лапласа:
- •Означення випадкової величини, дискретної та неперервної випадкових величин.
- •Закон розподілу випадкової величини.
- •Інтегральна функція розподілу випадкової величини: означення. Властивості.
- •Диференціальна функція розподілу (щільність розподілу) випадкової величини: означення. Властивості.
- •Математичне сподівання випадкової величини: означення, властивості.
- •Дисперсія та середньоквадратичне відхилення випадкової величини: означення, властивості.
- •Властивості дисперсії
- •Мода, медіана випадкової величини.
- •Початкові та центральні моменти.
- •Асиметрія, ексцес.
- •Означення багатовимірної випадкової величини.
- •Означення закону розподілу багатовимірної випадкової величини.
- •Основні числові характеристики для системи двох дискретних випадкових величин.
- •Коефіцієнт кореляції та його властивості.
- •Функція розподілу ймовірностей та щільність ймовірностей системи
- •Двовимірний нормальний закон розподілу.
- •Закон розподілу Бернулі
- •Біноміальний закон розподілу двв. Числові характеристики.
- •Пуасонівський закон розподілу двв, числові характеристики.
- •Геометричний закон розподілу двв, числові характеристики.
- •Гіпергеометричний закон розподілу двв, числові характеристики.
- •Рівномірний закон розподілу нвв.
- •Нормальний закон розподілу.
- •Показниковий закон та його використання в теорії надійності та теорії черг.
- •Розподіл
- •Розподіл Стьюдента. Розподіл Фішера. (45-46)
- •Правило трьох сигм. Логарифмічний нормальний закон.
- •Функції одного дискретного випадкового аргументу.
- •.Числові характеристики функції одного дискретного випадкового аргументу.
- •Функції неперервного випадкового аргументу та їх числові характеристики.
- •Функції двох випадкових аргументів та їх числові характеристики.
- •Числові характеристики функції дискретного випадкового аргументу
- •Нерівності Чебишева та їх значення.
- •Теорема Чебишева.
- •Теорема Бернуллі.
- •Центральна гранична теорема теорії ймовірностей ( теорема Ляпунова) та її використання у математичній статистиці.
- •Предмет і задачі математичної статистики.
- •Утворення вибірки. Генеральна та вибіркова сукупність.
- •Статистичні розподіли вибірок.
- •Емпірична функція розподілу, гістограма та полігон.
- •Числові характеристики: вибіркова середня, дисперсія вибірки, середньоквадратичне відхилення.
- •Мода й медіана, емпіричні початкові та центральні моменти, асиметрія та ексцес.
- •Дати визначення статистичної оцінки.
- •Точкові та інтервальні статистичні оцінки.
- •Дати визначення довірчого інтервалу.
- •Що таке нульова та альтернативна статистичні гіпотези.
- •Перевірка (правдивості нульової) гіпотези про нормальний закон розподілу ознаки генеральної сукупності.
- •Емпіричні та теоретичні частоти.
- •Критерії узгодження Пірсона та Колмогорова.
- •Помилки першого та другого роду.
- •Статистичний критерій. Критична область.
- •Дати означення моделі експерименту.
- •Дати поняття одно факторний аналіз.
- •Загальна дисперсія, між групова та внутрішньогрупова дисперсії.
- •. Поняття про функціональну, статистичну та кореляційну залежності.
- •Рівняння лінійної регресії. Довірчий інтервал для лінії регресії
- •Вибірковий коефіцієнт кореляції.
- •Множинна регресія, множинний коефіцієнт кореляції та його властивості.
- •Нелінійна регресія.
- •85) Визначення та приклади ланцюгів Маркова.
- •Інтуїтивне визначення
- •Формальне визначення
- •Граф переходів ланцюга Маркова
- •86) Ймовірність переходу за n кроків.
- •87) Замкнуті множини станів.
- •88) Класифікація станів. Неповоротний стан.
- •1. Ергодичний стан
- •2. Нестійкі стани
- •3. Поглинальні стани
- •89) Ергодична властивість неперіодичних ланцюгів. Стаціонарний розподіл.
- •90) Періодичні ланцюги.
- •91) Загальний марковський процес (Ланцюг Маркова з неперервним часом).
- •92) Гранична поведінка перехідних ймовірностей ланцюга Маркова.
- •93) Гілчастий процес.
- •94) Алгебраїчний підхід вивчення скінченних ланцюгів Маркова.
- •96) Випадковий проце, стаціонарний у широкому сенсі.
- •97) Аналіз кореляційної функції. Ергодичність.
- •100) Рівняння Колмогорова - Чепмена
90) Періодичні ланцюги.
Періодичний стан — це такий стан ланцюга Маркова, яке відвідується ланцюгом тільки через проміжки часу, кратні фіксованому числу.
Період стану
Нехай
дано однорідний ланцюг
Маркова з дискретним часом
з
матрицею перехідних ймовірностей
.
Зокрема, для будь-якого
,
матриця
є
матрицею перехідних ймовірностей
кроків.
Розглянемо послідовність
.
Число
,
де
позначає найбільший
спільний дільник, называється періодом стану
.
Періодичні стани і ланцюги
Якщо
, то стан називається періодичним. Якщо
, то стан називається аперіодичним.
Періоди сполучених станів збігаються:
.
Таким чином, період будь-якого нерозкладного класу ланцюга Маркова визначений і дорівнює періоду будь-якого свого представника. Відповідно, класи поділяються на періодичні та фперіодичні.
Якщо ланцюг Маркова нерозкладний, то періоди всіх його станів збігаються і загальне значення, яке приймається ними, називається періодом ланцюга. Ланцюг називається періодичним, якщо його період більше одиниці, і аперіодичним в зворотному випадку.
91) Загальний марковський процес (Ланцюг Маркова з неперервним часом).
Визначення
Сімейство
дискретних випадкових величин
називається ланцюгом Маркова (неперервним
часом), якщо:
.
Ланцюг Маркова з неперервним часом називається однорідним, якщо:
.
92) Гранична поведінка перехідних ймовірностей ланцюга Маркова.
Стан i називається перехідним якщо, існує ненульова ймовірність, що починаючи з i, ми ніколи не повернемося в стан i. Більш формально нехай випадкова змінна Ti є часом першого повернення в стан i:
Тоді стан i є перехідним тоді й лише тоді, коли:
Якщо стан не є перехідним то він називається рекурентним. Неважко помітити, що якщо стан є перехідним то імовірність повернення в цей стан нескінченну кількість разів рівна нулю. У випадку рекурентного стану ця імовірність рівна одиниці. Тобто перехідний це такий стан, який процес в певний момент часу покидає назавжди, а рекурентний це такий стан до якого процес постійно повертається.
Визначимо також математичне очікування часу повернення:
Для
перехідного стану ця величина очевидно
рівна нескінченності. Для рекурентних
станів
може
бути як скінченним так і нескінченним.
Стан i називається позитивно
рекурентним,
якщо Mi є
скінченне; в іншому
випадку i називається нуль-рекурентним..
Стан i є
рекурентним тоді й лише тоді коли:
В одному класі досяжності або всі елементи є перехідними або всі елементи є рекурентними. Стан i називається поглинаючим якщо його неможливо покинути. Тобто:
93) Гілчастий процес.
Ветвящийся процесс — это случайный процесс, описывающий широкий круг явлений, связанных с размножением и превращением каких-либо объектов.
Основным аналитическим аппаратом ветвящихся процессов являются производящие функции:
94) Алгебраїчний підхід вивчення скінченних ланцюгів Маркова.
95)