Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
norm_teoriya (1).docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
970.66 Кб
Скачать
  1. Статистичний критерій. Критична область.

Для перевірки правильності висунутої статистичної гіпотези вибирають так званий статистичний критерій, керуючись яким відхиляють або не відхиляють нульову гіпотезу. Статистичний критерій, котрий умовно позначають через K, є випадковою величиною, закон розподілу ймовірностей якої нам заздалегідь відомий. Так, наприклад, для перевірки правильності як статистичний критерій K можна взяти випадкову величину, яку позначають через K = Z, що дорівнює і яка має нормований нормальний закон розподілу ймовірностей. При великих обсягах вибірки (n > 30) закони розподілу статистич­них критеріїв наближатимуться до нормального. Спостережуване значення критерію, який позначають через K, обчислюють за результатом вибірки.

Множину  всіх можливих значень статистичного критерію K можна поділити на дві підмножини А і , які не перетинаються. . Сукупність значень статистичного критерію K А, за яких нульова гіпотеза не відхиляється, називають областю прийняття нульової гіпотези. Сукупність значень статистичного критерію K  , за яких нульова гіпотеза не приймається, називають критичною областю. Отже, А — область прийняття Н0, — критична область, де Н0 відхиляється. Точку або кілька точок, що поділяють множину  на підмножини А і , називають критичними і позначають через Kкр. Існують три види критичних областей: Якщо при K < Kкр нульова гіпотеза відхиляється, то в цьому разі ми маємо лівобічну критичну область, яку умовно можна зобразити (рис. 1).

Якщо при нульова гіпотеза відхиляється, то в цьому разі маємо правобічну критичну область

Якщо ж при і при нульова гіпотеза відхиляється, то маємо двобічну критичну область

Лівобічна і правобічна області визначаються однією критичною точкою, двобічна критична область — двома критичними точками, симетричними відносно нуля.

  1. Дати означення моделі експерименту.

Випадковий експеримент (випадкове випробування, випадковий досвід) - математична модель відповідного реального експерименту, результат якого неможливо точно передбачити. Математична модель повинна задовольняти вимогам: вона повинна бути адекватна і адекватно описувати експеримент; повинна бути визначена сукупність безлічі спостережуваних результатів в рамках розглянутої математичної моделі при строго певних фіксованих початкових даних, що описуються в рамках математичної моделі; повинна існувати принципова можливість здійснення експерименту з випадковим результатом наскільки угодне кількість разів при незмінних вхідних даних, (де - кількість вироблених експериментів); повинно бути доведено вимогу або апріорі прийнята гіпотеза про стохастичною стійкості відносної частоти для будь-якого спостережуваного результату, визначеного в рамках математичної моделі.

  1. Дати поняття одно факторний аналіз.

Дисперсійний аналіз дає загальну схему перевірки статистичних гіпотез, що базуються на вивченні різних джерел варіації або неоднорідності. Однофакторний дисперсійний аналіз використовується для перевірки значимих відмінностей між середніми значеннями вибірок, що розглядаються. Дані аналізу – це k незалежних одновимірних вибірок, елементи яких вимірюються в однакових одиницях. Кількість елементів кожної вибірки може бути різною. Однофакторний аналіз порівнює 2 джерела варіації: - міжгрупова (між вибірками), -внутрішньогрупова (в середині однієї вибірки).

Нехай потрібно дослідити вплив на ознаку Х певного одного фактора. Результати експерименту ділять на певне число груп, які відрізняються між собою ступенем дії фактора.

Для зручності в проведенні необхідних обчислень результати експерименту зводять в спеціальну таблицю:

Ступінь впливу фактора (групи)

Спостережуване значення ознаки Х

Групові середні

Загальна середня

1

,

2

3

….

р

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]