
- •1. Классификация компьютерных сетей
- •2. Эталонная модель взаимодействия открытых систем. Нижние уровни.
- •3. Эталонная модель взаимодействия открытых систем. Верхние уровни.
- •4. Характеристики линий связи
- •5. Типы линий связи. Витые пары
- •6. Типы линий связи. Коаксиальные кабели
- •7. Типы линий связи. Оптоволоконные кабели
- •8. Методы аналоговой модуляции
- •9. Методы цифровой модуляции
- •10. Спектры сигналов при амплитудной модуляции
- •11. Спектры сигналов при потенциальном кодировании
- •12. Соотношения спектров сигналов при различных способах цифровой модуляции
- •13. Методы избыточного кодирования и причины их применения
- •14. Методы скрэмблирования и причины их применения
- •15. Методы коммутации при передаче данных
- •16. Канальный уровень. Протоколы подуровня управления логическим каналом
- •17. Методы цифровой модуляции
- •18. Спектры сигналов при амплитудной модуляции и потенциальном кодировании
- •19. Метод доступа к физической среде csma/cd
- •20. Ограничение диаметра сети при использовании метода доступа к физической среде csma/cd
- •21. Множественный доступ с передачей полномочий для моноканала
- •22. Алгоритмы входа станции в сеть и выхода ее из сети при использовании множественного доступа с передачей полномочий для моноканала
- •23. Множественный доступ с передачей полномочий для циклического кольца
- •24. Оценка максимального времени доставки сообщения в сетях с методами доступа ieee 802.4, ieee 802.5
- •25. Архитектура сети Ethernet
- •26. Архитектура сети Arcnet
- •27. Архитектура сети Token Ring
- •28. Устройства расширения сетей. Мост
- •29. Устройства расширения сетей. Коммутатор.
- •30. Устройства расширений сетей. Маршрутизатор.
- •31. Классы адресов стека протоколов tcp/ip
- •32. Проблема ограничения количества ip адресов и ее решение с помощью масок
- •33. Проблема ограничения количества ip адресов и ее решение с помощью бесклассовой адресации (возможно надо дополнить или править)
- •34. Проблема ограничения количества ip адресов и ее решение с помощью технологий bnat и napt
- •35. Автоматизация процесса назначения ip адресов
- •36. Отображение ip адресов на локальные адреса
- •37. Организация доменов и доменных имен
- •38. Маршрутизация без использования масок
- •39. Маршрутизация с использованием масок постоянной длины
- •40. Маршрутизация с использованием масок переменной длины
- •41. Структура таблицы маршрутизации. Алгоритм выбора маршрута.
- •42. Виртуальные локальные сети vlan
- •44. Методы кодирования для беспроводной передачи данных
- •45. Bluetooth принципы построения, функционирования и основные параметры
- •46. Бесклассовая маршрутизация cidr
- •47. Классификация протоколов маршрутизации
- •48. Протокол маршрутизации ospf (выбор кратчайшего пути первым)
- •49. Технология mpls
46. Бесклассовая маршрутизация cidr
Суть технологии CIDR заключается в следующем. Каждому поставщику услуг Internet должен назначаться непрерывный диапазон в пространстве IP-адресов. При таком подходе адреса всех сетей каждого поставщика услуг имеют общую старшую часть - префикс, поэтому маршрутизация на магистралях Internet может осуществляться на основе префиксов, а не полных адресов сетей. Агрегирование адресов позволит уменьшить объем таблиц в маршрутизаторах всех уровней, а следовательно, ускорить работу маршрутизаторов и повысить пропускную способность Internet.
Деление IP-адреса на номер сети и номер узла в технологии CIDR происходит не на основе нескольких старших бит, определяющих класс сети (А, В или С), а на основе маски переменной длины, назначаемой поставщиком услуг.
На рис. показан пример некоторого пространства IP-адресов, которое имеется в распоряжении гипотетического поставщика услуг. Все адреса имеют общую часть в k старших разрядах - префикс. Оставшиеся п разрядов используются для дополнения неизменяемого префикса переменной частью адреса. Диапазон имеющихся адресов в таком случае составляет 2n. Когда потребитель обращается к поставщику с просьбой о выделении ему некоторого количества адресов, то в имеющемся пуле адресов «вырезается» непрерывная область S1, S2, S3 или S4 соответствующего размера. Причем границы этой области выбираются такими, чтобы для нумерации требуемого числа узлов хватило некоторого числа младших разрядов, а значения всех оставшихся (старших) разрядов было одинаковым у всех адресов данного диапазона. Таким условиям могут удовлетворять только области, размер которых кратен степени двойки, а границы выделяемого участка должны быть кратны требуемому размеру.
CIDR позволяет решить две основные задачи.
· Более экономное расходование адресного пространства. Действительно, получая в свое распоряжение адрес сети, например, класса С, некоторые организации не используют весь возможный диапазон адресов просто потому, что в их сети имеется гораздо меньше 255 узлов. Технология CIDR отказывается от традиционной концепции разделения адресов протокола IP на классы, что позволяет получать в пользование столько адресов, сколько реально необходимо.
· Уменьшение числа записей в таблицах маршрутизаторов за счет объединения маршрутов - одна запись в таблице маршрутизации может представлять большое количество сетей. Действительно, для всех сетей, номера которых начинаются с одинаковой последовательности цифр, в таблице маршрутизации может быть предусмотрена одна запись.
47. Классификация протоколов маршрутизации
Протоколы маршрутизации делятся на два вида, зависящие от типов алгоритмов, на которых они основаны:
Дистанционно-векторные протоколы, основаны на Distance Vector Algorithm (DVA);
RIP — Routing Information Protocol;
IGRP — Interior Gateway Routing Protocol (лицензированный протокол Cisco Systems);
BGP — Border GateWay Protocol;
EIGRP — Enhanced Interior Gateway Routing Protocol (на самом деле он гибридный — объединяет свойства дистанционно-векторных протоколов и протоколов по состоянию канала; лицензированный протокол Cisco Systems);
AODV
Протоколы состояния каналов связи, основаны на Link State Algorithm (LSA).
IS-IS — Intermediate System to Intermediate System (стек OSI);
OSPF — Open Shortest Path First;
NLSP — NetWare Link-Services Protocol (стек Novell);
HSRP и CARP — протоколы резервирования шлюза в Ethernet-сетях.
OLSR
TBRPF
Так же протоколы маршрутизации делятся на два вида в зависимости от сферы применения:
Междоменной маршрутизации;
EGP;
BGP;
IDRP;
IS-IS level 3;
Внутридоменной маршрутизации.
RIP;
IS-IS level 1-2;
OSPF;
IGRP;
EIGRP.
---------------------------------------------------------------------
Внешние (EGP) - BGPv4
Внутренние(IGP):
1)Без таблицы маршрутизации:
-лавинная (передает всем, кроме отправителя)
-от источника (отправитель указывает путь прохождения, маршрутизатор ищет соседа)
2)С таблицей:
Статическая маршрутизация (записи вводятся вручную и имеют неизменяемый статус)
Адаптивная маршрутизация (изменения в сети отражаются автоматически в таблицах):
-централизованная (сервер маршрутов строит таблицы для всех)
-распределенная (каждый заполняет свою таблицу):
-Дистанционно-векторные алгоритмы (DVA)(каждый М знает от соседей информацию о сетях и расстояниях о них, регулярно)- RIP
-алгоритмы состояния связей (LSA)(каждый М использует граф сети для нахождения оптимального маршрута, проверка состояний сообщениями HELLO периодически) - IS-IS, OSPF