Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций ДМ 2013.rtf
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
10.04 Mб
Скачать
  1. Рекуррентное соотношение, их общее и частное решение.

Рекуррентным соотношением (или рекуррентной формулой) называется соотношение вида

, (1)

где – функция, с помощью которой можно вычислить все члены последовательности с заданными первыми элементами .

Последовательность , получаемая с помощью соотношения (1), называется рекуррентной (recurrere (лат.) – возвращаться).

Примеры. 1) Соотношение определяет арифметическую прогрессию с разностью и с начальным членом a .

2) Соотношение an+1=an×q определяет геометрическую прогрессию со знаменателем q¹0 и с начальным членом a0.

3) Соотношение an+2=an+an+1 с начальными элементами a0=a1=1 задает последовательность Фибоначчи.

В 1202 году Леонардо из Пизы, известный как Фибоначчи – сын Боначчи, написал сочинение «Liber abacci», в котором была задача: «Предположим, что через месяц от одной пары кроликов порождает еще одна пара кроликов, а рождают кролики со второго месяца рождения. Имеется одна пара кроликов. Сколько пар кроликов будет через один год?»

Число новорожденных пар равно числу кроликов два месяца назад (an). Чтобы получить число кроликов в этом месяце (an+2), надо к этому числу прибавить число кроликов месяц назад (an+1). Следовательно, последовательность чисел пар кроликов по месяцам определяется соотношением an+2=an+an+1 с начальными элементами a0=1 и a1=1.

Месяц

1

2

3

4

5

6

7

8

9

10

11

12

Число пар кроликов через месяц

2

3

5

8

13

21

34

55

89

144

233

377

Общим решением рекуррентного соотношения (1) называется множество всех последовательностей, удовлетворяющих этому соотношению.

Частным решением соотношения (1) называется одна из последовательностей, удовлетворяющих этому соотношению.

Пример 1¢. Последовательность an=a0+nd является общим решением соотношения an=an-1+d. Это – формула общего члена арифметической прогрессии с разностью d и с начальным членом прогрессии a0.

Пример 2¢. Последовательность bn=b0×qn является общим решением соотношения bn=bn-1×q. Это – формула общего члена геометрической прогрессии со знаменателем q¹0 и с начальным членом прогрессии b0.

Пример 3¢. Так называемая формула Бине jn= является частным решением соотношения jn=jn-2+jn-1 при j0=j1=1.

  1. Линейное рекуррентное соотношение.

Соотношение вида

an+k+p1an+k-1+…+pkan=h(n) (2)

где h(n) – функция от числа , а , называется линейным рекуррентным соотношением.

Линейное рекуррентное соотношение называют однородным, если f(n)=0:

an+k+p1an+k-1+…+pkan=0. (3)

Многочлен xk+p1xk-1+…+pk-1x+pk называется характеристическим для соотношения (2).

Корень a многочлена называется простым, если делится на , но не делится на .

Корень a многочлена называется кратным, если делится на , но не делится на , .

При этом число называется кратностью корня .

Основная теорема алгебры: многочлен степени с комплексными коэффициентами имеет комплексных корней с учетом их кратности.

Теорема 1. Пусть характеристический многочлен однородного линейного рекуррентного соотношения (3) имеет n простых корней a1, …, an. Тогда общее решение рекуррентного соотношения (3) имеет следующий вид:

, (4)

где c1,…,ckÎC.

Доказательство. Легко проверить следующие два утверждения.

(a) Последовательность cxn, где cÎC, является решением рекуррентного соотношения (3).

(b) Если последовательности an и bn являются решениями соотношения (3), то последовательность an+bn также является решением соотношения (3).

Из (a) и (b) следует, что любая последовательность вида (4) является решением соотношения (3).

Обратно, любое решение соотношения (3) имеет вид (4).

При n=0,1,…,k-1, из равенства (4) мы получим систему линейных уравнений относительно c1,…,ck:

(5)

Определитель системы (5) есть известный в алгебре определитель Вандермонда:

.

Так как простые корни x1,…,xk попарно различные, то D¹0. Значит, система (5) имеет (единственное) решение.

Теорема 2. Пусть характеристический многочлен однородного линейного рекуррентного соотношения (3) имеет k корней: a1 кратности , …, ak кратности , , . Тогда общее решение рекуррентного соотношения (3) имеет следующий вид:

, (6)

где .

Замечание. Общее решение неоднородного линейного соотношения (2) можно найти как сумму общего решения однородного линейного соотношения (3) и частного решения неоднородного линейного соотношения (2).