
- •Конспект лекций по теории алгоритмов (пи, 1 семестр) (лектор – доцент Вахитов р.Х.)
- •Отношение включения над множествами и его свойства.
- •Объединение и пересечение, их свойства.
- •Разность и симметрическая разность двух множеств.
- •Декартово произведение множеств, его график.
- •Виды соответствий, их графы и графики.
- •Виды отображений, их графы и графики.
- •Бинарные отношения, их свойства.
- •Отношения эквивалентности, фактор - множества.
- •Разбиение множества на попарно непересекающиеся классы.
- •Отношения порядка, упорядоченные множества.
- •Основные правила комбинаторики.
- •Формула включений и исключений для двух множеств.
- •Формула включений и исключений для трех и для n множеств.
- •Виды выборок по m элементов из n элементов.
- •Формулы числа размещений без повторений.
- •Формула числа размещения с повторениями.
- •Формулы числа сочетаний без повторений.
- •Рекуррентная формула для числа сочетаний без повторений.
- •Формулы числа сочетаний с повторениями.
- •Биномиальные коэффициенты как числа сочетаний без повторений.
- •Перестановки с повторениями и полиномиальная формула.
- •Рекуррентное соотношение, их общее и частное решение.
- •Линейное рекуррентное соотношение.
- •Разбиение перестановки на циклы по k элементов.
- •Разбиение множества на блоки по k элементов.
- •Графы, матрицы инцидентности и смежности.
- •Степень вершины. Теорема Эйлера о сумме степеней всех вершин.
- •Изоморфизм графов. Попарно неизоморфные (p,q)-графы.
- •Орграфы, их матрицы инцидентности и смежности.
- •Изоморфизм орграфов. Попарно неизоморфные (p,q)-орграфы.
- •Маршруты, цепи, циклы в графах.
- •Мультиграфы. Эйлеров цикл. Эйлеров граф.
- •Гамильтонов цикл. Гамильтонов граф. Тэта-граф.
- •Плоские и планарные графы. Плоские карты. Теорема Эйлера.
- •Полные графы. Граф k4 планарный и граф k5 не планарный.
- •Двудольные графы. Граф k2,3 планарный и граф k3,3 не планарный.
- •Деревья. Теорема об эквивалентных определениях дерева.
- •Остов графа. Поиск в глубину и поиск в ширину.
Рекуррентная формула для числа сочетаний без повторений.
Используя формулу для числа сочетаний без повторений, можно доказать следующую теорему.
Теорема.
,
,
.
Доказательство.
.
.
.
Пример.
Найти все биномиальные коэффициенты
для
.
Решение запишем в виде треугольника Паскаля – бесконечной таблицы, имеющей треугольную форму. В этом треугольнике на вершине и по бокам стоят единицы, так как . Каждое внутреннее число равно сумме двух расположенных над ним чисел: . Строки треугольника симметричны относительно вертикальной оси: .
Биномиальный
коэффициент
лежит на пересечении строки n
и столбца m.
m n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
0 |
1 |
|
|
|
|
|
|
|
|
|
|
1 |
1 |
1 |
|
|
|
|
|
|
|
|
|
2 |
1 |
2 |
1 |
|
|
|
|
|
|
|
|
3 |
1 |
3 |
3 |
1 |
|
|
|
|
|
|
|
4 |
1 |
4 |
6 |
4 |
1 |
|
|
|
|
|
|
5 |
1 |
5 |
10 |
10 |
5 |
1 |
|
|
|
|
|
6 |
1 |
6 |
15 |
20 |
15 |
6 |
1 |
|
|
|
|
7 |
1 |
7 |
21 |
35 |
35 |
21 |
7 |
1 |
|
|
|
8 |
1 |
8 |
28 |
56 |
70 |
56 |
28 |
8 |
1 |
|
|
9 |
1 |
9 |
36 |
84 |
126 |
126 |
84 |
36 |
9 |
1 |
|
10 |
1 |
10 |
45 |
120 |
210 |
252 |
210 |
120 |
45 |
10 |
1 |