Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций ДМ 2013.rtf
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
10.04 Mб
Скачать
  1. Виды выборок по m элементов из n элементов.

Комбинации, или выборки, – это различные конструкции элементов заданного множества, подчиненных тем или иным условиям. Простейшие из них – это выборки из n элементов по m, построения, в которых из заданного n-множества надо выбрать элементы m раз, упорядоченных или неупорядоченных, с повторениями или без повторений.

Размещения из n элементов по m – это упорядоченные выборки элементов из заданного n-множества по m.

Приведем все размещения из 3 элементов множества по 2.

С повторениями: .

Без повторений: .

Приведем все размещения из 2 элементов множества по 3.

С повторениями: .

Сочетания из n элементов по m – это неупорядоченные выборки элементов из заданного n-множества по m.

Приведем все сочетания из 3 элементов множества по 2.

С повторениями: .

Без повторений: .

Приведем все сочетания из 2 элементов множества по 3.

С повторениями: .

Математическое представление выборок. Размещение из n элементов по m – это просто последовательность длины m элементов из n-множества.

Сочетание без повторений из n элементов по m – это просто подмножество n-множества, содержащее ровно m элементов.

Сочетание с повторениями из n элементов по m – это график некоторого отображения a из множества первых m натуральных чисел в заданное n-множество: . Только сочетание мы записываем мы проще: a1a2…am.

  1. Формулы числа размещений без повторений.

Число всех размещений без повторений по m из n элементов обозначается .

Теорема 1. .

Доказательство. В размещении (x1,…,xm) без повторений первый элемент x1 можно выбрать n способами, второй элемент x2 можно выбрать n-1 способами, …, m-й элемент xm можно выбрать n-(m-1)=n-m+1 способами.

n-факториал – это произведение первых n положительных целых чисел: n!=1×2×3×…×n. Считается, что 0-факториал равен 1: 0!=1.

Теорема 2. .

Доказательство. Правую часть равенства теоремы 2 умножим и разделим на произведение (n-m)×(n-m-1)×…×2×1=(n-m)!

Перестановка из n элементов – это размещение без повторений из n элементов по n. Число всех перестановок из элементов обозначается Pn.

Буква P от французского «permutation» («перестановка»).

Из теоремы 1 или теоремы 2 следует, что Pn=n!

  1. Формула числа размещения с повторениями.

Число всех размещений с повторениями по m из n элементов обозначается .

Буква A от французского «arrangement» («приведение в порядок»).

Теорема. .

Доказательство. В размещении (x1,…,xm) с повторениями первый элемент x1 можно выбрать n способами, второй элемент x2 можно выбрать n способами, …, m-й элемент xm можно выбрать n способами.

По правилу произведения .

  1. Формулы числа сочетаний без повторений.

Число всех сочетаний без повторений по m из n элементов обозначается .

Буква C от французского «combinaison» («сочетание»).

Теорема. .

Доказательство. Каждое размещение без повторений (x1,…,xm) по m из n можно построить в 2 шага: вначале строится сочетание без повторений {x1,…,xm} по m из n, а затем – перестановка (x1,…,xm) из m элементов множества {x1,…,xm}. По правилу произведения

Из теоремы и формул для числа размещений без повторений следуют еще 2 формулы для числа сочетаний без повторений:

.

.