
- •Основные понятия кинематики: система отсчета, относительность движения и покоя, радиус-вектор, вектор перемещения, пройденный путь, кинематические уравнения движения .
- •Относительность Движения и покоя :
- •Кинематические уравнения движения :
- •Скорость (вектор средней скорости, средняя скорость неравномерного движения, скорость в данный момент времени). Проекция вектора скорости на координатные оси.
- •Ускорение (среднее и мгновенное). Проекция вектора ускорения на координатные оси, проекция вектора ускорения на направление касательной к траектории и на направление нормали к касательной.
- •Инерциальные системы отсчета. Взаимодействия и силы. Силы в механике: гравитационная, упругости, трения. Уравнение динамики материальной точки, системы материальных точек.
- •Импульс, его изменение. Центр масс механической системы, закон движения центра масс.
- •Закон сохранения импульса, его связь с однородностью пространства.
- •Механическая работа. Работа силы тяготения и силы упругости. Консервативные и неконсервативные силы. Мощность.
- •Работа силы тяжести
- •Работа силы упругости
- •Механическая энергия, ее виды. Кинетическая энергия материальной точки, системы материальных точек. Изменение кинетической энергии.
- •Поле консервативных сил. Характеристика поля тяготения. Потенциальная энергия тела в поле тяготения. Потенциальная энергия упруго деформированных тел.
- •Момент импульса материальной точки и системы материальных точек (относительно неподвижной точки, относительно неподвижной оси).
- •Работа при вращательном движении.
- •Кинетическая энергия вращающегося твердого тела (ось вращения неподвижна, ось вращения движется поступательно и равномерно).
- •Элементы специальной теории относительности (постулаты сто, относительность времени, сокращение линейных размеров, релятивистская динамика).
- •Постулаты сто
- •Относительность времени
- •Сокращение линейных размеров
- •Термодинамические системы, статистический и термодинамический методы их исследования, Макроскопические и микроскопические параметры системы.
- •Уравнение Клапейрона - Менделеева. Основное уравнение молекулярно-кинетической теории идеальных газов. Средняя энергия теплового движения молекул.
- •Распределение молекул по скоростям теплового движения (распределение Максвелла). Закон равномерного распределения энергии по степеням свободы. Внутренняя энергия идеального газа.
- •Количество теплоты. Первое начало термодинамики. Теплоемкость, ее зависимость от типа процесса. Адиабатный процесс.
- •Теплоемкость.
- •Энтропия. Изменение энтропии при различных процессах. Закон возрастания энтропии. Второе начало термодинамики.
- •Изменение энтропии в изопроцессах
- •Круговые процессы. Тепловые двигатели и холодильные машины. Кпд тепловой машины. Цикл Карно, кпд цикла Карно.
- •Круговой процесс (цикл). Обратимые и необратимые процессы.
- •Тепловые двигатели и холодильные машины. Цикл Карно и его к. П. Д. Для идеального газа
- •Средняя длина свободного пробега молекул, среднее число их столкновений в единицу времени.
- •. Средняя длина свободного пробега молекул.
- •Потенциал электростатического поля — скалярная величина, равная отношению потенциальной энергии заряда в поле к этому заряду:
- •Расчет напряженности электростатического поля, созданного:
- •Работа кулоновских сил по перемещению заряда. Напряженность как градиент потенциала. Эквипотенциальные поверхности.
- •Расчет разности потенциалов двух точек электростатического поля:
- •Электрический диполь. Полярные, неполярные и ионные диэлектрики. Сегнетоэлектрики.
- •Поляризация диэлектриков (деформационная, ориентационная, ионная).
- •Поляризованность (вектор поляризации).
- •Электростатическое поле в диэлектрике. Диэлектрическая восприимчивость. Диэлектрическая проницаемость.
- •Проводники в электростатическом поле. Электростатическая индукция.
- •Электроемкость уединенного проводника. Электроемкость конденсатора.
- •Электроемкость уединенного проводника
- •Энергия уединенного заряженного проводника:
- •Энергия заряженного конденсатора. Энергия электростатического поля.
- •Энергия электростатического поля.
- •Электрический ток, его характеристики: сила и плотность тока.
- •Неоднородный участок электрической цепи. Закон Ома в интегральной и дифференциальной (локальной) форме записи для неоднородного участка электрической цепи.
- •Закон Джоуля – Ленца для однородного участка электрической цепи в интегральной и дифференциальной (локальной) форме записи.
- •Магнитное поле, его характеристики.
- •Закон Био - Савара – Лапласа, его применение для расчета индукции магнитного поля, созданного:
- •Закон полного тока (теорема о циркуляции вектора индукции магнитного поля), его применение для расчета индукции поля длинного соленоида.
- •Применение закона для расчета индукции поля длинного соленоида
- •Силы в магнитном поле (сила Ампера, сила Лоренца).
- •Поток вектора индукции магнитного поля. Теорема Гаусса для вектора индукции магнитного поля.
Работа силы упругости
На
рисунке 6.10, а показана пружина, у которой
один конец закреплен неподвижно, а к
другому концу прикреплен шар. Если
пружина растянута, то она действует на
шар с силой
(рис.6.10,б),
направленной к положению равновесия
шара, в котором пружина не деформирована.
Начальное удлинение пружины равно
.
Вычислим работу силы упругости при
перемещении шара из точки с координатой
x1
в точку с координатой x2.
Из рисунка 6.10, в видно, что модуль
перемещения равен:
где
-
конечное удлинение пружины.
Вычислить работу силы упругости по формуле (6.2) нельзя, так как эта формула справедлива лишь для постоянной силы, а сила упругости при изменении деформации пружины не остается постоянной. Для вычисления работы силы упругости воспользуемся графиком за¬висимости модуля силы упругости от координаты шара (рис.6.11).
В
§ 43 мы показали, что при постоянном
значении проекции силы на перемещение
точки приложения силы ее работа может
быть определена по графику зависимости
Fx
от x
и что эта работа численно равна площади
прямоугольника.
При произвольной зависимости Fx
от x,
разбивая перемещение на малые отрезки,
в пределах каждого из которых силу можно
считать постоянной, увидим, что работа
будет численно равна площади трапеции.
В нашем примере работа силы упругости
на перемещении точки ее приложения
численно
равна площади трапеции ВCDM.
Следовательно,
Согласно закону
Гука
и
.
Подставляя эти выражения для сил в
уравнение (6.17) и учитывая, что
,
получим
Или окончательно
Мы рассмотрели
случай, когда направления силы упругости
и перемещения тела совпадали:
.
Но можно было бы найти
работу силы
упругости, когда ее направление
противоположно перемещению тела или
составляет с ним произвольный угол, а
также при перемещении тела вдоль кривой
произвольной формы.
Во всех
этих случаях движения тела под действием
силы упругости
мы пришли бы к той же формуле для работы
(6.18). Работа сил упругости зависит лишь
от деформаций пружины
и
в начальном и конечном состояниях.
Таким образом, работа силы упругости
не зависит от формы траектории и, так
же как и сила тяжести, сила упругости
является консервативной.
В физике консервативные си́лы (потенциальные силы) — это силы, работа которых не зависит от вида траектории, точки приложения этих сил и закона их движения и определяется только начальным и конечным положением этой точки[1]. Равносильным определением является и следующее: консервативные силы — это такие силы, работа которых по любой замкнутой траектории равна 0.
Силы, работа которых на замкнутом пути не равна нулю, называются неконсервативными. К числу таких сил относятся, например, сила трения и сила вязкого сопротивления. Легко понять, что при движении частицы по замкнутому контуру работа подобных сил будет отрицательной.
В теоретической физике выделяют только четыре типа сил, каждая из которых является консервативной (см. Фундаментальные взаимодействия). В школьной программе по физике силы разделяют на консервативные и неконсервативные. Примерами консервативных сил являются: сила тяжести, сила упругости, сила кулоновского (электростатического) взаимодействия. Примером неконсервативной силы является сила трения.
Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется.
Для консервативных сил выполняются следующие равенства:
—
работа, производимая
консервативной силой, определяется
только начальным и конечным положением
точки её приложения и не зависит от
выбора траектории, по которой перемещается
тело.
—
работа
консервативных сил по произвольному
замкнутому контуру равна 0;
—
ротор
консервативных сил равен 0;
—
консервативная сила
является градиентом
некой скалярной
функции
,
называемой силовой. Эта функция равна
потенциальной
энергии
взятой
с обратным знаком. Соответственно,
и
связаны
соотношением
Таким образом,
потенциальная сила всегда направлена
в сторону уменьшения потенциальной
энергии.
Мо́щность — физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени[1].
Различают среднюю
мощность за промежуток времени
и мгновенную мощность в данный момент времени:
Интеграл от мгновенной мощности за промежуток времени равен полной переданной энергии за это время:
Если на движущееся тело действует сила, то эта сила совершает работу. Мощность в этом случае равна скалярному произведению вектора силы на вектор скорости, с которой движется тело:
|
|
где F —
сила, v —
скорость,
—
угол между вектором скорости и силы.
Частный случай мощности при вращательном движении:
|
|
M —
момент силы,
—
угловая скорость,
—
число пи,
n —
частота вращения (число оборотов в
минуту, об/мин.)