
- •Основные понятия кинематики: система отсчета, относительность движения и покоя, радиус-вектор, вектор перемещения, пройденный путь, кинематические уравнения движения .
- •Относительность Движения и покоя :
- •Кинематические уравнения движения :
- •Скорость (вектор средней скорости, средняя скорость неравномерного движения, скорость в данный момент времени). Проекция вектора скорости на координатные оси.
- •Ускорение (среднее и мгновенное). Проекция вектора ускорения на координатные оси, проекция вектора ускорения на направление касательной к траектории и на направление нормали к касательной.
- •Инерциальные системы отсчета. Взаимодействия и силы. Силы в механике: гравитационная, упругости, трения. Уравнение динамики материальной точки, системы материальных точек.
- •Импульс, его изменение. Центр масс механической системы, закон движения центра масс.
- •Закон сохранения импульса, его связь с однородностью пространства.
- •Механическая работа. Работа силы тяготения и силы упругости. Консервативные и неконсервативные силы. Мощность.
- •Работа силы тяжести
- •Работа силы упругости
- •Механическая энергия, ее виды. Кинетическая энергия материальной точки, системы материальных точек. Изменение кинетической энергии.
- •Поле консервативных сил. Характеристика поля тяготения. Потенциальная энергия тела в поле тяготения. Потенциальная энергия упруго деформированных тел.
- •Момент импульса материальной точки и системы материальных точек (относительно неподвижной точки, относительно неподвижной оси).
- •Работа при вращательном движении.
- •Кинетическая энергия вращающегося твердого тела (ось вращения неподвижна, ось вращения движется поступательно и равномерно).
- •Элементы специальной теории относительности (постулаты сто, относительность времени, сокращение линейных размеров, релятивистская динамика).
- •Постулаты сто
- •Относительность времени
- •Сокращение линейных размеров
- •Термодинамические системы, статистический и термодинамический методы их исследования, Макроскопические и микроскопические параметры системы.
- •Уравнение Клапейрона - Менделеева. Основное уравнение молекулярно-кинетической теории идеальных газов. Средняя энергия теплового движения молекул.
- •Распределение молекул по скоростям теплового движения (распределение Максвелла). Закон равномерного распределения энергии по степеням свободы. Внутренняя энергия идеального газа.
- •Количество теплоты. Первое начало термодинамики. Теплоемкость, ее зависимость от типа процесса. Адиабатный процесс.
- •Теплоемкость.
- •Энтропия. Изменение энтропии при различных процессах. Закон возрастания энтропии. Второе начало термодинамики.
- •Изменение энтропии в изопроцессах
- •Круговые процессы. Тепловые двигатели и холодильные машины. Кпд тепловой машины. Цикл Карно, кпд цикла Карно.
- •Круговой процесс (цикл). Обратимые и необратимые процессы.
- •Тепловые двигатели и холодильные машины. Цикл Карно и его к. П. Д. Для идеального газа
- •Средняя длина свободного пробега молекул, среднее число их столкновений в единицу времени.
- •. Средняя длина свободного пробега молекул.
- •Потенциал электростатического поля — скалярная величина, равная отношению потенциальной энергии заряда в поле к этому заряду:
- •Расчет напряженности электростатического поля, созданного:
- •Работа кулоновских сил по перемещению заряда. Напряженность как градиент потенциала. Эквипотенциальные поверхности.
- •Расчет разности потенциалов двух точек электростатического поля:
- •Электрический диполь. Полярные, неполярные и ионные диэлектрики. Сегнетоэлектрики.
- •Поляризация диэлектриков (деформационная, ориентационная, ионная).
- •Поляризованность (вектор поляризации).
- •Электростатическое поле в диэлектрике. Диэлектрическая восприимчивость. Диэлектрическая проницаемость.
- •Проводники в электростатическом поле. Электростатическая индукция.
- •Электроемкость уединенного проводника. Электроемкость конденсатора.
- •Электроемкость уединенного проводника
- •Энергия уединенного заряженного проводника:
- •Энергия заряженного конденсатора. Энергия электростатического поля.
- •Энергия электростатического поля.
- •Электрический ток, его характеристики: сила и плотность тока.
- •Неоднородный участок электрической цепи. Закон Ома в интегральной и дифференциальной (локальной) форме записи для неоднородного участка электрической цепи.
- •Закон Джоуля – Ленца для однородного участка электрической цепи в интегральной и дифференциальной (локальной) форме записи.
- •Магнитное поле, его характеристики.
- •Закон Био - Савара – Лапласа, его применение для расчета индукции магнитного поля, созданного:
- •Закон полного тока (теорема о циркуляции вектора индукции магнитного поля), его применение для расчета индукции поля длинного соленоида.
- •Применение закона для расчета индукции поля длинного соленоида
- •Силы в магнитном поле (сила Ампера, сила Лоренца).
- •Поток вектора индукции магнитного поля. Теорема Гаусса для вектора индукции магнитного поля.
Проводники в электростатическом поле. Электростатическая индукция.
Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действовать электростатическое поле, в результате чего они начнут перемещаться. Перемещение зарядов (ток) продолжается до тех пор, пока не установится равновесное распределение зарядов, при котором электростатическое поле внутри проводника обращается в нуль. Это происходит в течение очень короткого времени. В самом деле, если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии. Итак, напряженность поля во всех точках внутри проводника равна нулю:
Е = 0
Отсутствие поля внутри проводника означает, согласно, что потенциал во всех точках внутри проводника постоянен ( φ= const), т.е. поверхность проводника в электростатическом поле является эквипотенциальной. Отсюда жеследует, что вектор напряженности поля на внешней поверхности проводника направлен по нормали к каждой точке его поверхности. Если бы это было не так, то под действием касательной составляющейЕзаряды начали бы по поверхности проводника перемещаться, что, в свою очередь, противоречило бы равновесному распределению зарядов.
Если проводнику сообщить некоторый заряд Q, то некомпенсированные заряды располагаются только на поверхности проводника. Это следует непосредственно из теоремы Гаусса, согласно которой заряд Q, находящийся внутри проводника в некотором объеме, ограниченном произвольной замкнутой поверхностью, равен
так как во всех точках внутри поверхности D= 0.
Найдем
взаимосвязь между напряженностьюЕполя
вблизи поверхности заряженного
проводника и поверхностной плотностью
σзарядов на его поверхности. Для этого
применим теорему Гаусса к бесконечно
малому цилиндру с основаниями ▲S,
пересекающему границу проводник —
диэлектрик. Ось цилиндра ориентирована
вдоль вектора Е
(рис. 141). Поток
вектора электрического смещения через
внутреннюю часть цилиндрической
поверхности равен нулю, так как внутри
проводника
(а
следовательно, и
)
равен нулю, поэтому поток вектора D
сквозь замкнутую цилиндрическую
поверхность определяется только
потоком сквозь наружное основание
цилиндра. Согласно теореме Гаусса, этот
поток (D▲S)
равен сумме зарядов
(Q =σ▲S),охватываемых поверхностью: D▲S=σ▲S т.е.
или
Где
диэлектрическая
проницаемость среды, окружающей
проводник.
Таким образом, напряженность электростатического поля у поверхности проводника определяется поверхностной плотностью зарядов. Можно показать, что соотношение задает напряженность электростатического поля вблизи поверхности проводника любой формы.
Е
сли
во внешнее электростатическое поле
внести нейтральный проводник, то
свободные заряды (электроны, ионы) будут
перемещаться: положительные — по полю,
отрицательные — против поля ( рис. 142,
а).На
одном конце проводника будет скапливаться
избыток положительного заряда, на
другом — избыток отрицательного.
Эти заряды называются индуцированными.
Процесс будет
происходить до тех пор, пока напряженность
поля внутри проводника не станет равной
нулю, а линии напряженности вне
проводника — перпендикулярными его
поверхности.( рис. 142, б) Таким образом,
нейтральный проводник, внесенный в
электростатическое поле, разрывает
часть линий напряженности; они
заканчиваются на отрицательных
индуцированных зарядах и вновь начинаются
на положительных. Индуцированные
заряды распределяются на внешней
поверхности проводника. Явление
перераспределения поверхностных
зарядов на проводнике во внешнем
электростатическом поле называется
электростатической
индукцией.
Из рис. 142, б следует, что индуцированные заряды появляются на проводнике вследствие смещения их под действием моля, т. е. σявляется поверхностной плотностью смещенных зарядов. По электрическое смещение Dвблизи проводника численно равно поверхностной плотности смещенных зарядов. Поэтому вектор D получил название вектора электрического смещения
Так как в состоянии равновесия внутри проводника заряды отсутствуют, то создание внутри него полости не повлияет на конфигурацию расположения зарядов и тем самым на электростатическое поле. Следовательно, внутри полости поле будет отсутствовать. Если теперь этот проводник с полостью заземлить, то потенциал во всех точках полости будет нулевым, т. е. полость полностью изолирована от влияния внешних электростатических полей. На этом основана электростатическая защита—экранирование тел, например измерительных приборов, от влияния внешних электростатических полей. Вместо сплошного проводника для защиты может быть использована густая металлическая сетка, которая, кстати, является эффективной при наличии не только постоянных, но и переменных электрических полей.