
- •Основные понятия кинематики: система отсчета, относительность движения и покоя, радиус-вектор, вектор перемещения, пройденный путь, кинематические уравнения движения .
- •Относительность Движения и покоя :
- •Кинематические уравнения движения :
- •Скорость (вектор средней скорости, средняя скорость неравномерного движения, скорость в данный момент времени). Проекция вектора скорости на координатные оси.
- •Ускорение (среднее и мгновенное). Проекция вектора ускорения на координатные оси, проекция вектора ускорения на направление касательной к траектории и на направление нормали к касательной.
- •Инерциальные системы отсчета. Взаимодействия и силы. Силы в механике: гравитационная, упругости, трения. Уравнение динамики материальной точки, системы материальных точек.
- •Импульс, его изменение. Центр масс механической системы, закон движения центра масс.
- •Закон сохранения импульса, его связь с однородностью пространства.
- •Механическая работа. Работа силы тяготения и силы упругости. Консервативные и неконсервативные силы. Мощность.
- •Работа силы тяжести
- •Работа силы упругости
- •Механическая энергия, ее виды. Кинетическая энергия материальной точки, системы материальных точек. Изменение кинетической энергии.
- •Поле консервативных сил. Характеристика поля тяготения. Потенциальная энергия тела в поле тяготения. Потенциальная энергия упруго деформированных тел.
- •Момент импульса материальной точки и системы материальных точек (относительно неподвижной точки, относительно неподвижной оси).
- •Работа при вращательном движении.
- •Кинетическая энергия вращающегося твердого тела (ось вращения неподвижна, ось вращения движется поступательно и равномерно).
- •Элементы специальной теории относительности (постулаты сто, относительность времени, сокращение линейных размеров, релятивистская динамика).
- •Постулаты сто
- •Относительность времени
- •Сокращение линейных размеров
- •Термодинамические системы, статистический и термодинамический методы их исследования, Макроскопические и микроскопические параметры системы.
- •Уравнение Клапейрона - Менделеева. Основное уравнение молекулярно-кинетической теории идеальных газов. Средняя энергия теплового движения молекул.
- •Распределение молекул по скоростям теплового движения (распределение Максвелла). Закон равномерного распределения энергии по степеням свободы. Внутренняя энергия идеального газа.
- •Количество теплоты. Первое начало термодинамики. Теплоемкость, ее зависимость от типа процесса. Адиабатный процесс.
- •Теплоемкость.
- •Энтропия. Изменение энтропии при различных процессах. Закон возрастания энтропии. Второе начало термодинамики.
- •Изменение энтропии в изопроцессах
- •Круговые процессы. Тепловые двигатели и холодильные машины. Кпд тепловой машины. Цикл Карно, кпд цикла Карно.
- •Круговой процесс (цикл). Обратимые и необратимые процессы.
- •Тепловые двигатели и холодильные машины. Цикл Карно и его к. П. Д. Для идеального газа
- •Средняя длина свободного пробега молекул, среднее число их столкновений в единицу времени.
- •. Средняя длина свободного пробега молекул.
- •Потенциал электростатического поля — скалярная величина, равная отношению потенциальной энергии заряда в поле к этому заряду:
- •Расчет напряженности электростатического поля, созданного:
- •Работа кулоновских сил по перемещению заряда. Напряженность как градиент потенциала. Эквипотенциальные поверхности.
- •Расчет разности потенциалов двух точек электростатического поля:
- •Электрический диполь. Полярные, неполярные и ионные диэлектрики. Сегнетоэлектрики.
- •Поляризация диэлектриков (деформационная, ориентационная, ионная).
- •Поляризованность (вектор поляризации).
- •Электростатическое поле в диэлектрике. Диэлектрическая восприимчивость. Диэлектрическая проницаемость.
- •Проводники в электростатическом поле. Электростатическая индукция.
- •Электроемкость уединенного проводника. Электроемкость конденсатора.
- •Электроемкость уединенного проводника
- •Энергия уединенного заряженного проводника:
- •Энергия заряженного конденсатора. Энергия электростатического поля.
- •Энергия электростатического поля.
- •Электрический ток, его характеристики: сила и плотность тока.
- •Неоднородный участок электрической цепи. Закон Ома в интегральной и дифференциальной (локальной) форме записи для неоднородного участка электрической цепи.
- •Закон Джоуля – Ленца для однородного участка электрической цепи в интегральной и дифференциальной (локальной) форме записи.
- •Магнитное поле, его характеристики.
- •Закон Био - Савара – Лапласа, его применение для расчета индукции магнитного поля, созданного:
- •Закон полного тока (теорема о циркуляции вектора индукции магнитного поля), его применение для расчета индукции поля длинного соленоида.
- •Применение закона для расчета индукции поля длинного соленоида
- •Силы в магнитном поле (сила Ампера, сила Лоренца).
- •Поток вектора индукции магнитного поля. Теорема Гаусса для вектора индукции магнитного поля.
Электростатическое поле в диэлектрике. Диэлектрическая восприимчивость. Диэлектрическая проницаемость.
Диэлектрики – электрически нейтральные вещества, состоящие из атомов и молекул, которые можно представить в виде системы электрических зарядов, локализованных на атомах и молекулах. Если в молекуле заменить систему положительных зарядов суммарным зарядом, расположенным в центре тяжести положительных зарядов, а систему отрицательных зарядов суммарным зарядом, расположенным в центре тяжести отрицательных зарядов, то мы можем представить молекулу в виде диполя. В отсутствие внешнего электрического поля все диэлектрики делятся на три группы:
Помещение
диэлектрика в электрическое поле
вызывает его поляризацию
– возникновение отличного от нуля
результирующего дипольного момента
pV.
где
pi
– дипольный момент одной молекулы. Для
количественной оценки поляризации
диэлектрика используют векторную
величину – поляризованность
Р
которая
для большинства веществ линейно зависит
от напряженности внешнего электрического
поля
где
χ
– диэлектрическая
восприимчивость вещества.
С увеличением напряженности внешнего
поля и уменьшением температуры
диэлектрическая восприимчивость
возрастает.
Величина
называется
электрическим
смещением D
(электрической
индукцией)
и, поскольку вектор поляризации линейно
зависит от напряженности внешнего поля,
определяется выражением
где
–
диэлектрическая проницаемость среды.
Электрическое смещение, его связь с поляризованностью.
Электрическое
смещение.(Электрическая
индукция) векторная
величина,
равная сумме вектора напряжённости
электрического поля и вектора
поляризации.
.
Его связь с поляризованностью: Электрическое смещение-векторная величина, равная геометрической сумме напряженности электрического поля в рассматриваемой точке, умноженной на электрическую постоянную, и поляризованности в той же точке.
Теорема Гаусса для электростатического поля в диэлектрике.
(3)
т.
е. поток вектора смещения электростатического
поля в диэлектрике сквозь любую замкнутую
поверхность равен алгебраической сумме
свободных электрических зарядов,
заключенных внутри этой поверхности.
В такой форме теорема Гаусса верна для
электростатического поля как для
однородной и изотропной, так и для
неоднородной и анизотропной сред.
Для
вакуума Dn =
ε0En (ε=1),
и поток вектора напряженности Е сквозь
произвольно выбранную замкнутую
поверхность равен
Так
как источниками поля Е в
среде являются как свободные, так и
связанные заряды, то теорему Гаусса для
поля Е в
самом общем виде можно записать
как
где
∑Qi и
∑Qsv—
соответственно алгебраические суммы
свободных и связанных зарядов, которые
охватываются замкнутой поверхностью
S. Но эта формула неприменима для описания
поля Е в
диэлектрике, поскольку она выражает
свойства неизвестного поля Е через
связанные заряды, которые, в свою очередь,
определяются им же. Это еще раз показывает
целесообразность введения вектора
электрического смещения.