
- •Основные понятия кинематики: система отсчета, относительность движения и покоя, радиус-вектор, вектор перемещения, пройденный путь, кинематические уравнения движения .
- •Относительность Движения и покоя :
- •Кинематические уравнения движения :
- •Скорость (вектор средней скорости, средняя скорость неравномерного движения, скорость в данный момент времени). Проекция вектора скорости на координатные оси.
- •Ускорение (среднее и мгновенное). Проекция вектора ускорения на координатные оси, проекция вектора ускорения на направление касательной к траектории и на направление нормали к касательной.
- •Инерциальные системы отсчета. Взаимодействия и силы. Силы в механике: гравитационная, упругости, трения. Уравнение динамики материальной точки, системы материальных точек.
- •Импульс, его изменение. Центр масс механической системы, закон движения центра масс.
- •Закон сохранения импульса, его связь с однородностью пространства.
- •Механическая работа. Работа силы тяготения и силы упругости. Консервативные и неконсервативные силы. Мощность.
- •Работа силы тяжести
- •Работа силы упругости
- •Механическая энергия, ее виды. Кинетическая энергия материальной точки, системы материальных точек. Изменение кинетической энергии.
- •Поле консервативных сил. Характеристика поля тяготения. Потенциальная энергия тела в поле тяготения. Потенциальная энергия упруго деформированных тел.
- •Момент импульса материальной точки и системы материальных точек (относительно неподвижной точки, относительно неподвижной оси).
- •Работа при вращательном движении.
- •Кинетическая энергия вращающегося твердого тела (ось вращения неподвижна, ось вращения движется поступательно и равномерно).
- •Элементы специальной теории относительности (постулаты сто, относительность времени, сокращение линейных размеров, релятивистская динамика).
- •Постулаты сто
- •Относительность времени
- •Сокращение линейных размеров
- •Термодинамические системы, статистический и термодинамический методы их исследования, Макроскопические и микроскопические параметры системы.
- •Уравнение Клапейрона - Менделеева. Основное уравнение молекулярно-кинетической теории идеальных газов. Средняя энергия теплового движения молекул.
- •Распределение молекул по скоростям теплового движения (распределение Максвелла). Закон равномерного распределения энергии по степеням свободы. Внутренняя энергия идеального газа.
- •Количество теплоты. Первое начало термодинамики. Теплоемкость, ее зависимость от типа процесса. Адиабатный процесс.
- •Теплоемкость.
- •Энтропия. Изменение энтропии при различных процессах. Закон возрастания энтропии. Второе начало термодинамики.
- •Изменение энтропии в изопроцессах
- •Круговые процессы. Тепловые двигатели и холодильные машины. Кпд тепловой машины. Цикл Карно, кпд цикла Карно.
- •Круговой процесс (цикл). Обратимые и необратимые процессы.
- •Тепловые двигатели и холодильные машины. Цикл Карно и его к. П. Д. Для идеального газа
- •Средняя длина свободного пробега молекул, среднее число их столкновений в единицу времени.
- •. Средняя длина свободного пробега молекул.
- •Потенциал электростатического поля — скалярная величина, равная отношению потенциальной энергии заряда в поле к этому заряду:
- •Расчет напряженности электростатического поля, созданного:
- •Работа кулоновских сил по перемещению заряда. Напряженность как градиент потенциала. Эквипотенциальные поверхности.
- •Расчет разности потенциалов двух точек электростатического поля:
- •Электрический диполь. Полярные, неполярные и ионные диэлектрики. Сегнетоэлектрики.
- •Поляризация диэлектриков (деформационная, ориентационная, ионная).
- •Поляризованность (вектор поляризации).
- •Электростатическое поле в диэлектрике. Диэлектрическая восприимчивость. Диэлектрическая проницаемость.
- •Проводники в электростатическом поле. Электростатическая индукция.
- •Электроемкость уединенного проводника. Электроемкость конденсатора.
- •Электроемкость уединенного проводника
- •Энергия уединенного заряженного проводника:
- •Энергия заряженного конденсатора. Энергия электростатического поля.
- •Энергия электростатического поля.
- •Электрический ток, его характеристики: сила и плотность тока.
- •Неоднородный участок электрической цепи. Закон Ома в интегральной и дифференциальной (локальной) форме записи для неоднородного участка электрической цепи.
- •Закон Джоуля – Ленца для однородного участка электрической цепи в интегральной и дифференциальной (локальной) форме записи.
- •Магнитное поле, его характеристики.
- •Закон Био - Савара – Лапласа, его применение для расчета индукции магнитного поля, созданного:
- •Закон полного тока (теорема о циркуляции вектора индукции магнитного поля), его применение для расчета индукции поля длинного соленоида.
- •Применение закона для расчета индукции поля длинного соленоида
- •Силы в магнитном поле (сила Ампера, сила Лоренца).
- •Поток вектора индукции магнитного поля. Теорема Гаусса для вектора индукции магнитного поля.
Расчет напряженности электростатического поля, созданного:
а) точечным зарядом, заряженной сферой;
в) равномерно заряженной бесконечной плоскостью;
г) равномерно заряженной длинной нитью (цилиндром).
А)- Для обнаружения и опытного исследования электростатического поля используется пробный точечный положительный заряд — такой заряд, который не искажает исследуемое поле (не вызывает перераспределения зарядов, создающих поле). Если в поле, создаваемое зарядом Q, поместить пробный заряд Q0, то на него действует сила F, различная в разных точках поля, которая, согласно закону Кулона (78.2), пропорциональна пробному заряду Q0. Поэтому отношение F/Q0 не зависит от Q0 и характеризует электростатическое поле в той точке, где пробный заряд находится. Эта величина называется напряженностью и является силовой характеристикой электростатического поля. Напряженность электростатического поля в данной точке есть физическая величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля:
Направление вектора Е совпадает с направлением силы, действующей на положительный заряд. Если поле создается положительным зарядом, то вектор Е направлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положи тельного заряда); если поле создается отрицательным зарядом, то вектор Е направлен к заряду.
Б
)Поле
равномерно заряженной сферической
поверхности.
Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверх-
ностной
плотностью +
. Благодаря равномерному распределению
заряда по
поверхности поле, создаваемое им, обладает сферической симметрией. Поэтому
линии напряженности направлены радиально (рис. 128).
Построим мысленно сферу радиуса r, имеющую общий центр с заряжен-
н
ой
сферой. Если г > R, то внутрь поверхности
попадает весь заряд Q, создающий
рассматриваемое поле, и, по теореме
Гаусса
откуда
При r>R поле убывает с расстоянием r по такому же закону, как у точеч-
ного
заряда. График зависимости E от г приведен
на рис. 129. Если
, то
замкнутая поверхность не содержит внутри зарядов, поэтому внутри равномер-
н
о
заряженной сферической поверхности
электростатическое поле отсутствует
(Е = 0).
В) Поле равномерно заряженной бесконечной плоскости.
Б
есконечная
плоскость (рис. 126) заряжена с постоянной
поверхностной плотностью +
= dQ/dS — заряд, приходящийся на единицу поверхности.
Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны. В качестве замкнутой поверхности мысленно по-
строим цилиндр, основания которого параллельны заряженной плоскости, а ось
перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности (cos = 0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме
потоков сквозь его основания (площади оснований равны и для основания En
с
овпадает
с E), т. е. равен 2ES. Заряд, заключенный
внутри построенной цилиндрической
поверхности, равен S. Согласно теореме
Гаусса (81.2), 2ES =
S/
0,
откуда
Из формулы вытекает, что Е не зависит от длины цилиндра, т. е.
напряженность поля на любых расстояниях одинакова по модулю, иными словами, поле равномерно заряженной плоскости однородно. .
Г)
Из соображений
симметрии следует, что линии напряженности
будут направлены по радиусам круговых
сечений цилиндра с одинаковой густотой
во все стороны относительно оси цилиндра.
В качестве замкнутой поверхности
мысленно построим коаксиальный с
заряженным цилиндр радиуса r и высотой
l. Поток вектора Е сквозь торцы коаксиального
цилиндра равен нулю (торцы параллельны
линиям напряженности), а сквозь боковую
поверхность равен
Если г < R, то замкнутая поверхность зарядов внутри не содержит, поэтому в этой области E = 0. Таким образом, напряженность поля вне равномерно заряженного бесконечного цилиндра определяется выражением (82.5), внутри же его поле отсутствует.