Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика (Восстановлен).docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.87 Mб
Скачать
  1. Энтропия. Изменение энтропии при различных процессах. Закон возрастания энтропии. Второе начало термодинамики.

Функция состояния, полный дифференциал которой равен , называется энтропией

Энтропия S – это отношение получен-ной или отданной теплоты к температу-ре, при которой происходил этот процесс

Изменение энтропии в изопроцессах

Энтропия системы является функцией ее состояния, определенная с точностью до произвольной постоянной.

Если система совершает равновесный переход из состояния 1 в состояние 2, то изменение энтропии:

Так как, ,то

или Общая формула показывающая изменения энтропии в процессах и.г. :

т.е. изменение энтропии S12 идеального газа при переходе его из состояния 1 в состояние 2 не зависит от вида перехода 1 2.

Каждый из изопроцессов идеального газа характеризуется своим изменением энтропии, а именно:

1. Изохорический

2. Изобарический

3. Изотермический

4. Адиабатический: это изоэнтропийным процесс

Второе начало термодинамики Термодинамика, это наука о тепловых процессах, о превращении тепловой энергии. Для описания термодинамических процессов первого начала термодинамики недостаточно. Выражая общий закон сохранения и превращения энергии, первое начало не позволяет определить направление протекания процессов

Исторически второе начало термодинамики возникло из анализа работы тепловых двигателей. От термостата с более высокой температурой Т1, называемого нагревателем за цикл отнимается количество теплоты Q1, а термостату с более низкой температурой Т2, называемому холодильником за цикл передается количество теплоты Q2 и совершается работа

Для любого процесса в изолированной системе энтропия конечного состояния не может быть меньше энтрпии начального состояния. Это – закон возрастания энтропии. Закон возрастания энтропии справедлив только для изолированных систем. С помощью внешней системы можно уменьшить энтропию тела. Однако суммарная энтропия тела и внешней системы уменьшиться не может.

Если изолированная система находится в состоянии с максимальной энтропией, сооответствующей ее энергии, то в ней не могут происходить никакие процессы, поскольку любой процесс привел бы к уменьшению энтропии. Таким образом, состояние с максимальной энтропией является наиболее устойчивым состоянием изолированной системы. Самопроизвольные процессы в изолированных системах идут в направлении роста энтропии.

  1. Круговые процессы. Тепловые двигатели и холодильные машины. Кпд тепловой машины. Цикл Карно, кпд цикла Карно.

Круговой процесс (цикл). Обратимые и необратимые процессы.

Круговым процессом (или циклом) называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме процессов цикл изображается замкнутой кривой (см.рис. a). Цикл, совершаемый идеальным газом, можно разбить на процессы расширения (1–2) и сжатия (2–1) газа. Работа расширения A1 (определяется площадью фигуры 1 a 2 V1 V2 2) положительна (dV>0)), работа сжатия A2 (определяется площадью фигуры 1 a 2 V1 V2 2) отрицательна (dV<0), Следовательно, работа A= A1+ A1, совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой. Если за цикл совершается положительная работа A>0 (цикл протекает по часовой стрелке), то он называется прямым (рис., а), если за цикл совершается отрицательная работа A<0 (цикл протекает против часовой стрелки), то он называется обратным (рис. b).

Прямой цикл используется в тепловых двигателях – периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл используется в холодильных машинах -периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высокой температурой.

В результате кругового процесса система возвращается в исходное состояние и, следовательно, полное изменение внутренней энергии газа равно нулю (D U = 0). В общем случае при протекании кругового процесса система может теплоту как получать Q1, так и отдавать Q2, поэтому теплота, полученная системой Q равна Q = Q1– Q2

Поэтому из первого начала термодинамики для кругового процесса (когда D U = 0) получаем, что работа за цикл равна

А = Q1– Q2

т. е. работа, совершаемая за цикл, равна разности количества полученной извне теплоты Q1 и отданной системой Q2. Поэтому коэффициент полезного действия для кругового процесса (к. п. д.)

Термодинамический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении; причем если такой процесс происходит сначала в прямом, а затем в обратном направлении и система возвращается в исходное состояние, то в окружающей среде и в этой системе не происходит никаких изменений. Всякий процесс, не удовлетворяющий этим условиям, является необратимым.

Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происходящего в системе, следует из того, что ее любое промежуточное состояние есть состояние термодинамического равновесия; для него «безразлично», идет процесс в прямом или обратном направлении. Реальные процессы сопровождаются диссипацией энергии (из-за трения, теплопроводности и т.д.), которая нами не обсуждается. Обратимые процессы – это идеализация реальных процессов. Их рассмотрение важно по двум причинам:

1) многие процессы в природе и технике практически обратимы;

2) обратимые процессы являются наиболее экономичными; имеют максимальный коэффициент полезного действия, что позволяет указать пути повышения к. п. д. реальных тепловых двигателей.