- •Статика. Основные понятия и аксиомы статики.
- •Сложение и разложение сил.
- •Виды связей и их реакции.
- •Теорема о трех сил.
- •Система сходящихся сил.
- •6. Приведение системы сходящихся сил.
- •Сложение плоской системы сходящихся сил.
- •Геометрическое условие равновесия.
- •9. Определение равнодействующей системы сходящихся сил методом проекций.
- •Условия равновесия сходящихся сил
- •Аналитическое условие равновесия.
- •Произвольная плоская система сил.
- •Пара сил.
- •Момент силы относительно точки.
- •Приведение к точке плоской системы произвольно расположенных сил.
- •Уравнения равновесия и их различные формы.
- •16 Трение.
- •Классификация основных видов трения
- •17. Коэффициент трения скольжения.
- •Коэффициент трения скольжения
- •Конус трения.
- •Статическая определимая и неопределимая задача.
- •Способы расчленения статически неопределимых задач.
- •6.1.2. Степень статической неопределимости
- •22. Определение усилия стержней ферм.
- •23. Пространственная система сил.
- •24. Приведение пространственной системы сил к заданному центру.
- •25. Условия равновесия пространственной системы сил.
- •26. Центр тяжести твердого тела.
- •Центр тяжести твердого тела
- •27. Статический момент плоской фигуры.
- •Центр тяжести. Геометрические характеристики плоской фигуры.
- •Главные моменты инерции плоской фигуры.
- •30 Определение координат центра тяжести плоских и пространственных фигур.
- •Основные проблемы и объекты сопротивления материалов.
- •32. Основные гипотезы.
- •33. Виды деформации.
- •Деформация сдвига (среза)
- •Деформация кручения
- •Деформация гибки
- •34. Метод сечения.
- •35. Напряжения.
- •36. Растяжение и сжатие стержней.
- •Напряжения в растянутом или сжатом стержне[править | править исходный текст]
- •37. Испытание материалов на растяжение и сжатие.
- •38. Определение прочности стержней при сжатии и растяжении.
- •39. Закон Гука при растяжении и сжатии, коэффициент Пуассона.
- •40. Напряжения в наклонных сечениях при сжатии и растяжении.
- •41 Статически неопределимые задачи при растяжении и сжатии.
- •43 Сдвиг. Основные понятия.
- •44 Напряженное состояние при чистом сдвиге.
- •45 Модуль Юнга при сдвиге.
- •46. Практические расчеты на сдвиг.
- •Плоский изгиб
- •48 Поперечный и истый изгиб.
- •49. Связь между поперечной силой и изгибающим моментом.
- •50 Способы построения эпюр Ми и q.
- •2. Построение эпюр продольных сил Nz
- •51. Напряжения в поперечных сечениях стержня при чистом изгибе.
- •52. Касательные напряжения. Формула Жуковского.
- •53. Устойчивость. Устойчивость равновесия сжатых стержней.
- •54. Формула Эйлера. Границы применимости формулы Эйлера.
- •55 Практический расчет для определения критической силы устойчивости.
6.1.2. Степень статической неопределимости
Разность между числом неизвестных, необходимых для расчёта заданного сооружения, и числом независимых уравнений равновесия, составленных для решения задачи, называется степенью статической неопределимости сооружения. Другими словами, эта разность определяет количество лишних связей в заданной расчётной схеме сооружения, усилия в которых требуется определить, не прибегая к уравнениям равновесия.
Степень статической неопределимости можно вычислить, преобразуя заданную статически неопределимую систему в статически определимую и параллельно подсчитывая число удалённых связей. Такой подход является наиболее общим, но часто у читателей вызывает определённые трудности. Поэтому в плоских стержневых системах на начальном этапе изучения этой и последующих тем степень статической неопределимости рекомендуется определять по формуле "контуров".
Любой замкнутый плоский стержневой контур содержит три лишних связи, т.е. трижды статически неопределим. В этом можно убедиться, рассматривая определение внутренних усилий в сечении "с" рамы, представляющей собой вместе с диском "земля" замкнутый контур (рис. 6.6,а). Любая отсечённая часть этой рамы имеет шесть неизвестных: рис. 6.6,б – внутренние усилия в сечении "с" Mc, Qc, Nc и реакции заделки VA, HA, MA; рис. 6.6, в – внутренние усилия в сечениях "с" и "е" Mc, Qc, Nc, Mе, Qе, Nе. Равновесие рассматриваемых выше отсечённых частей описывается тремя уравнениями. Таким образом, разность между числом неизвестных, необходимых для описания напряжённо-деформированного состояния рамы, и числом уравнений равновесия равно трём.
Рис.6.6
Если сооружение состоит из К не накладывающихся друг на друга контуров, то общее число лишних связей в нём равно 3К.
Рис.6.7
Наличие в одноконтурном сооружении одного простого цилиндрического или поступательного шарнира снижает степень статической неопределимости такого сооружения на единицу, так как любая отсечённая часть контура, включающая в себя сечение, расположенное на бесконечно близком расстоянии от шарнира, будет содержать теперь пять, а не шесть, неизвестных (рис. 6.7). Напомним читателям, что простой цилиндрический или поступательный шарнир связывает только два диска. Если шарнир соединяет n дисков, то он эквивалентен n–1 простому шарниру.
В общем случае, если К контуров имеют Н простых цилиндрических или поступательных шарниров, то степень статической неопределимости сооружения равна
nst = 3K – H.
Число контуров и простых шарниров зависит от способа представления расчётной схемы сооружения. На рис. 6.8,а,б показано изображение расчётной схемы одной и той же рамы с различным количеством контуров и простых шарниров. Естественно, что степень статической неопределимости рамы не зависит от способа изображения её расчётной схемы. Действительно:
nst = 3 × 3 – 3 = 6 (рис. 6.8,а),
nst = 3 × 5 – 9 = 6 (рис. 6.8,б).
Рис.6.8 Рис.6.9
Пример 6.1. Используя формулу "контуров", вычислить степень статической неопределимости плоских стержневых систем, изображённых на рис. 6.9.
На рис. 6.9,а,б цифрами, объединёнными кружками, пронумерованы замкнутые контуры. Рядом с цилиндрическими шарнирами цифрами помечено количество простых шарниров.
nst = 3 × 3 – 8 = 1 (рис. 6.9,а),
nst = 3 × 9 – 24 = 3 (рис. 6.9,б).
21. Плоская ферма Фермой называется геометрически неизменная шарнирно-стержневая конструкция. Ферма называется плоской, если все стержни фермы лежат в одной плоскости. Определенность или устойчивость фермы отображает зависимость количества узлов и стержней фермы: Ферма определена, устойчивая K = 2N - 3 ; Ферма является неопределенной, имеет лишние стержни K > 2N - 3 ; Ферма неустойчивая и является механизмом K < 2N - 3 . При расчете фермы трением в узлах и весом стрежней пренебрегают, или распределяют вес стержней по узлам. Все внешние нагрузки (силы) к ферме прикладывают только в узлах, поэтому все стержни фермы испытывают или сжатие, или растяжение. Расчет фермы сводится к определению опорных реакций и усилий в ее стержнях. Для определения реакций опор составляют и решают три уравнение равновесия, считая ферму абсолютно твердым телом под действием известных внешних нагрузок (активных сил) и неизвестных реакций опор (реактивных сил). Для определения усилий в стержнях ферм существует 2 метода. Метод вырезания узлов Метод вырезывания узлов заключается в том, что мысленно вырезают узлы фермы, прикладывая к ним соответствующие внешние силы, реакций опор и реакции стрежней, и составляют уравнение равновесия сил, приложенных к каждому узлу. Вырезается узел с 2-мя неизвестными усилиями, так как в каждом узле составляется сходящаяся система сил, соответственно, составляют два уравнение равновесия Условно допускают, что все стержни растянуты, т.е. реакции стержней направлены от узлов. Метод Риттера Метод Риттера заключается в том, что ферму разделяют на две части сечением, проходящим через три стрежня, в которых нужно определить усилия, и рассматривают равновесие одной из частей. Действие отброшенной части заменяют соответствующими силами, которые направляют вдоль разрезанных стержней от узлов. Потом составляют уравнение равновесия для плоской произвольной системы сил Точка Риттера (центр моментов) – это такая точка для каждого с трех рассеченных стрежней, в которой пересекаются два других стержня данного сечения, например точка К – точка Риттера для определения усилия в стержне 6. Относительно точки Риттера составляют уравнение суммы моментов выбранной части фермы. В случае, если стержни не имеют точки пересечения, т.е. являются параллельными, составляется уравнение равновесия в виде суммы проекций всех сил выбранной части фермы на ось, перпендикулярную этим стержням.
Плоская ферма опирается на неподвижный и подвижный шарниры. К узлам фермы приложены нагрузки. [1]
Плоская ферма опирается на неподвижный и подвижный шарниры. К узлам фермы приложены две вертикальные нагрузки Р и две наклонные - Q и F. Размеры даны в метрах. [2]
Плоские фермы, имеющие три связи с фундаментом и отвечающие условиям жесткого закрепления, называются внешне статически определимыми. Если отбросить опорные связи и заменить их действие силами, равными по значению усилиям, возникающим в этих связях при действии внешней нагрузки, то равновесие фермы не нарушится и мы получим ферму, находящуюся в равновесии под действием внешних сил и трех неизвестных усилий в отброшенных связях - так называемых реакций связей. [3]
Плоские фермы, образованные добавлением к базовому треугольнику 1 - 2 - 3 ( рис. 3.16) каждого из последующих треугольников присоединением двух не лежащих на одной прямой стержней и одного узла, называются простыми фермами. Они обладают свойством геометрической неизменяемости, и для них условие (3.29) оказывается необходимым и достаточным. [4]
Плоская ферма, показанная на рисунке, имеет в узлах шарниры без трения и опирается в А и С. Стержни АВ, ВС, DE имеют одну и ту же длину и абсолютно жестки. Четыре наклонных элемента одинаковы как по длине, так и по упругим свойствам. [5]
Плоская ферма, имеющая форму правильного многоугольника с Af сторонами, связана радиальными стержнями. Радиальные стержни соединяют центр с каждым из узлов. [6]
-
Пространственная работа стропильного покрытия.
Сквозная плоская ферма имеет малую горизонтальную жесткость из плоскости и поэтому приобретает устойчивость только в пространственно-жестком блоке с другой фермой. [7]
-
Закрепление плоской фермы на опорах.
Плоские фермы конструкций стальных опор линий электропередачи, как правило, являются простейшими фермами или образованными наложением двух простейших ферм друг на друга. [8]
Простейшей плоской фермой является трехстержневая ферма ABC, изображенная на рис. 5.24, а; она содержит три узла. Добавляя этим же способом новые узлы, как показано на рис. 5.24, б штриховой линией, можно образовать множество более сложных ферм. [9]
Простой плоской фермой называется такая ферма, которая может быть получена из треугольной путем последовательного присоединения каждого нового узла при помощи двух новых стержней. [10]
Стержневой плоской фермой называется система, образованная прямолинейными стержнями, соединенными друг с другом в определенной последовательности шарнирами, расположенными по концам стержней. При соединении стержней такими шарнирами и воздействии нагрузок, приложенных в узлах, в стержнях возникают только осевые усилия - растягивающие или сжимающие. [11]
Стержни плоской фермы, расположенные по ее верхнему контуру, называются верхним поясом, расположенные по нижнему контуру-нижним поясом. [12]
Для плоских ферм Л С - 2У 3, если ферма прикрепленная, и Л С - 2У, если ферма свободная. [13]
