Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_2.rtf
Скачиваний:
6
Добавлен:
01.05.2025
Размер:
607.31 Кб
Скачать

14) Законы распределения случайных величин

Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, неизвестно заранее, какое именно.

 Дискретной (прерывной) случайной величиной называется случайная величина, принимающая отдельные друг от друга значения, которые можно перенумеровать.

Непрерывной случайной величиной называется случайная величина, возможные значения которой непрерывно заполняют какой-то промежуток.

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями. Закон распределения может иметь разные формы.

Рядом распределения дискретной случайной величины Х называется таблица, где перечислены возможные (различные) значения этой случайной величины х1х2, ..., хn с соответствующими им вероятностями р1р2, ..., рn:

х

  x1

x2

...

 xn

pi  

 p1

 p2

   

 pn

15) Истинное значение измеряемой величины почти всегда неизвестно. Часто в качестве оценки истинного значения служит среднее арифметическое полученных результатов измерений [3]:

 

,                             (2.21)

 

где   результаты единичных измерений;  порядковый номер измерения;  количество единичных измерений.

Среднее арифметическое представляет собой лишь оценку математического ожидания результата измерений и может стать оценкой истинного значения только после исключения систематических погрешностей. Степень приближения   к   тем больше, чем больше  . Следует напомнить, что математическое ожидание выражает наиболее вероятное значение случайной величины.

Заменив истинное значение   средним  , можно оценить абсолютную погрешность единичного измерения:

  .                                         (2.22)

16) Интервальное оценивание — один из видов статистического оценивания, предполагающий построение интервала, в котором с некоторой вероятностью находится истинное значение оцениваемого параметра.

Пусть   - неизвестный параметр генеральной совокупности. По сделанной выборке по определенным правилам находятся числа   и   такие чтобы выполнялось неравенство:

Интервал   является доверительным интервалом для параметра  , а число   - доверительной вероятностью или надежностью сделанной оценки. Обычно надежность задается заранее, причем выбираются числа близкие к 1 (0.95, 0.99 или 0.999).

17) Систематическая погрешность измерения - это составляющая погрешности результата измерения, остающаяся постоянной или же закономерно изменяющаяся при повторных измерениях одной и той же ФВ.

Способы уменьшения систематических погрешностей

Соблюдение и поддержание постоянными внешних условий измерений, включая уменьшение внешних воздействующих факторов: нагрева, электрических и магнитных полей, радиопомех и других непреднамеренных излучений, влажности, статических, механических напряжений и т.п.

Если в качестве средства измерений применяется измерительный прибор, то бывает полезно произвести сравнение измеряемой ФВ с более точной мерой этой же величины, используя измерительный прибор в качестве компаратора.

Индивидуальная градуировка измерительного прибора - по существу это сравнение с более точной мерой, однако в приборе "запоминаются" более точные значения меры на более длительный срок.

Метод противоположного влияния или компенсации погрешности по знаку. При этом выполняют два измерения, изменяя процедуру таким образом, чтобы предполагаемая погрешность имела другой знак.

Введение поправки, значение которой получено расчетом. Для реализации этого метода необходимо разработать физическую модель измерительного эксперимента, выполняемого методом косвенных измерений, или измерительного прибора. На основе физической модели составляется математическая модель, часто эта модель называется уравнением измерения (формулой измерения) y = y(x1x2, ..., xn). Это уравнение связывает значение искомой ФВ (функцию y) с результатами прямых измерений величин xi - аргументов, получаемых при прямых измерениях. Значение систематической погрешности и, следовательно, поправки определяют как полный дифференциал функции y на основе известных дифференциалов аргументов, то есть на основе систематических погрешностей прямых измерений

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]