
- •А.Г. Суслов
- •Рецензенты:
- •Кафедра «Технология машиностроения» Тульского государственного университета
- •Глава 4 технологическое обеспечение качества изделий машиностроения 6
- •Глава 5 технологическая производительность труда и себестоимость изделий. Экономическая эффективность. 41
- •Глава 6 методология разработки технологических процессов изготовления изделий в машиностроении 72
- •Глава 7 Технология изготовления различных деталей 111
- •Глава 10 совершенствование существующих и создание новых технологических методов обработки деталей машин и технологий 177
- •Глава 11 технологическая подготовка производства 200
- •Глава 12 технология восстановления деталей машин 241
- •Глава 4 технологическое обеспечение качества изделий машиностроения
- •4.1. Припуски на обработку
- •4.2. Обеспечение качества деталей на стадии технологической подготовки производства
- •4.7. Значения коэффициентов формулы (4.16)
- •4.1. Возможности методов обработки в обеспечении точности размеров и параметров качества плоских поверхностей деталей машин
- •4.2. Возможности методов обработки в обеспечении точности размеров и параметров качества наружных поверхностей вращения деталей машин
- •4.3. Возможности методов обработки в обеспечении точности размеров и параметров качества внутренних поверхностей вращения деталей машин
- •4.4. Возможности методов обработки по обеспечению точности зубьев и параметров качества их рабочих поверхностей
- •4.5. Возможности методов обработки по обеспечению точности шлицев и параметров качества их рабочих поверхностей
- •4.6. Возможности методов обработки по обеспечению точности зубьев и параметров качества их рабочих поверхностей
- •4.8. Значения параметра Cx для различных методов чистовой обработки
- •4.3 Обеспечение качества деталей при изготовлении
- •4.4. Обеспечение качества изделий при сборке
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 4-й главе
- •Глава 5 технологическая производительность труда и себестоимость изделий. Экономическая эффективность.
- •5.1 Технологическая производительность труда и техническое нормирование
- •5.2. Технологическая себестоимость
- •5.3. Функционально-стоимостной анализ технологических процессов
- •5.1. Перечень технико-экономической информации, необходимой для проведения фса технологического процесса
- •5.2. Структурно-стоимостная модель технологического процесса
- •5.4. Оценка экономической эффективности
- •5.3. Значение коэффициента
- •5.4. Значение коэффициента полных затрат труда
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 5-й главе
- •Глава 6 методология разработки технологических процессов изготовления изделий в машиностроении
- •6.1 Выбор заготовок для изготовления деталей машин
- •6.2 Назначение технологических баз при проектировании технологических процессов
- •6.3 Установление последовательности и выбор методов обработки поверхностей заготовок
- •6.4 Разработка технологических процессов изготовления деталей машин
- •6.5 Разработка технологических процессов сборки изделий
- •6.6 Выбор технологического оборудования, оснастки и средств контроля при разработке технологического процесса
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 6-й главе
- •Рекомендуемая тематика лабораторных работ и практических занятий по основам технологии машиностроения
- •Часть II Технологические методы и процессы производства изделий машиностроения
- •Глава 7 Технология изготовления различных деталей
- •7.1 Технология изготовления валов.
- •Выбор заготовок и технологических баз.
- •Выбор оборудования и оснастки
- •Маршрут изготовления деталей типа тел вращения: Валов, шпинделей, ходовых винтов
- •7.1. Маршрут изготовления вала в условиях мелкосерийного производства
- •7.2. Маршрут изготовления вала в условиях крупносерийного производства
- •7.3. Маршрут изготовления шпинделя в условиях серийного производства
- •7.4. Маршрут изготовления ходового винта токарного станка 16к20 в условиях серийного производства
- •7.2 Технология изготовления деталей зубчатых и червячных передач и методы обработки их поверхностей Конструктивная характеристика деталей и технические условия на их изготовление
- •Материалы и способы получения заготовок деталей зубчатых и червячных передач
- •Обработка отверстий
- •Обработка зубьев цилиндрических зубчатых колес
- •Маршрут изготовления зубчатых колес
- •7.5. Маршрут изготовления зубчатого колеса в мелкосерийном производстве
- •7.3 Технология изготовления корпусных деталей Служебное назначение корпусов и технические условия на их изготовление
- •Материал и способы получения заготовок
- •Обработка корпусных деталей
- •9.5. Комбинированные методы улучшения качества поверхности с помощью лазерной обработки
- •Параметры режима лазерного облучения, используемого для обработки материалов
- •Влияние видов покрытия на лазерное упрочнение поверхности заготовки из стали 40х
- •Режимы лазерной обработки на установках серии «Квант»
- •Влияние лазерного упрочнения на микротвердость сталей у8а и х12м
- •Изменение микротвердости поверхности заготовки в зависимости от числа повторных облучений
- •Энергия излучения, Дж, при лазерной обработке заготовок из твердых сплавов в зависимости от содержания кобальта для нормального зерна
- •Параметры лазерной обработки заготовок из твердого сплава в зависимости от содержания кобальта для очень мелкого зерна
- •. Параметры лазерной обработки заготовок из твердого сплава в зависимости от содержания кобальта для мелкого зерна
- •9.15. Износ, мкм, поверхности заготовки после различных видов обработки
- •9.16. Фреттинг-износ, мкм, после лазерной обработки заготовки из стали
- •9.5 Гальванические способы нанесения покрытий
- •9.17. Основные виды гальванических покрытий и области их применения
- •9.18. Состав хромовых электролитов
- •9.6 Химические способы нанесения покрытий
- •9.19. Состав ванны и режимы нанесения химических покрытий
- •9.20. Пластмассы для покрытия деталей вихревым и эжекционным способами
- •9.7 Наплавка и напыление материала
- •9.21. Электродные материалы и флюсы, применяемые при механизированной наплавке
- •9.8 Выбор способов повышения долговечности деталей машин
- •9.22. Применение и режимы газовой металлизации
- •9.23. Выбор способов повышения долговечности деталей машин
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 9-й главе
- •Глава 10 совершенствование существующих и создание новых технологических методов обработки деталей машин и технологий
- •10.1. Совершенствование технологических методов обработки деталей машин
- •10.2.Создание новых технологических методов обработки и процессов изготовления и ремонта изделий машиностроения
- •10.3. Наукоемкие конкурентоспособные технологии в машиностроении
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 10-й главе
- •Глава 11 технологическая подготовка производства
- •11.1. Организация технологической подготовки производства
- •Технологическая подготовка производства при проектировании изделия
- •Технологическая подготовка производства опытных образцов и единичных изделий
- •Технологическая подготовка производства серийных изделий
- •11.2 Оформление технологической документации
- •11.3 Заполнение маршрутных карт
- •11.3 Особенности технологических процессов и оформление технологической документации при обработке заготовок на станках с чпу и многоцелевых станках
- •11.4 Особенности разработки технологических процессов и оформления
- •11.5 Особенности разработки технологических процессов и заполнение технологической документации при обработке заготовок на автоматических линиях
- •Содержание граф при написании техпроцесса обработки заготовки на автоматах и полуавтоматах
- •11.6.Особенности разработки технологических процессов для гибких производств
- •11.7 Автоматизация проектирования технологических процессов
- •11.8 Технологическая подготовка технической реконструкции машиностроительных предприятий
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 11-й главе
- •Глава 12 технология восстановления деталей машин
- •12.1. Восстановление деталей машин термоупругопластическим деформированием
- •12.2. Восстановление деталей машин пластическим вытеснением материала
- •12.3 Восстановление деталей машин электромеханической обработкой
- •12.4. Восстановление деталей машин плазменными методами
- •12.5. Восстановление деталей машин наплавкой, наваркой
- •12.6. Подготовка восстанавливаемых поверхностей детали под нанесение покрытий
- •Способы подготовки поверхностей под газотермическое покрытие
- •12.7 Механическая обработка восстановленных поверхностей деталей машин
- •Относительная себестоимость обработки покрытий алмазным кругом при круглом наружном шлифовании
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 12-й главе
9.6 Химические способы нанесения покрытий
В промышленности применяют различные химические способы нанесения никелевых, хромовых, кобальтовых, никель-ко б альтовых и других упрочняющих покрытий. Процесс химического нанесения покрытий включает следующие операции: подготовку деталей к покрытию, нанесение покрытия на рабочие поверхности; термическую обработку, механическую обработку для придания деталям необходимых размеров и чистоты ' поверхности. Готовят детали к химическому покрытию так же, как и к гальваническому.
9.19. Состав ванны и режимы нанесения химических покрытий
Состав ванны и режим обработки |
Покрытие |
|||
никелевое |
хромовое |
кобальтовое |
никелевое |
|
Состав ванны, г/л: хлористый никель хлористый кобальт гипофосфит натрия соль Рошеля оксиацетат натрия хлористый алюминий фтористый хром хлористый хром уксусная кислота (ледяная) |
21 ... 30 - 10 ... 30 - 15 ... 20 - - - - |
- - 8,5 - - - - 17
|
- 30 20 - 50 50 - - - |
30 30 20 200 - 50 50 - - |
Скорость осаждения, мкм/ч |
15 ... 25 |
2,5 ... 3 |
15 |
15 |
Оптимальная температура, °С |
90.. 93 |
71 ... 78 |
90 ... 99 |
90 ... 100 |
Количество щелочи для нейтрализации, г/л |
4 ... б |
10 ... 11 |
9 ... 10 |
8 ... 10 |
Примерный состав ванн и режимы нанесения покрытия химическим способом приведены в табл. 9.19.
После термической обработки покрытий при температуре 350 ... 400 “С прочность их сцепления с основным металлом детали, твердость и износостойкость возрастают в 1,5 раза и более. Прочность сцепления покрытия с основным металлом высокая, например, со сталью 10 свыше 300 МПа. Слой, наносимый химическим путем, сцепляется с углеродистыми сталями прочнее, чем с легированными ияи быстрорежущими.
Скорость осаждения упрочняющего металла зависит в основном от температуры ванны: с повышением температуры никелевой ванны от 50 до 90 °С скорость осаждения никеля возрастает примерно в 7 раз.
Химическое хромирование возможно только по подслою никеля толщиной более 1 мкм. Для нормальной работы в ванну через каждый час добавляют до 3 г/л гипофосфита и до 3 мг/л уксусной кислоты и едкого натра. Катализаторами служат пластинки из железа, алюминия или других металлов, которые контактируют с обрабатываемыми деталями. Для придания слою хрома более высокой твердости детали нагревают до температуры 600 ... 800°С,азатем механически обрабатывают (обычно полируют).
Усталостная прочность деталей, покрытых никелем и прошедших отпуск при температуре 400 °С, снижается на 30 - 45 %, а износостойкость их повышается в 2 - 3 раза. Несмотря на значительно больший расход реактивов, чем при гальваническом способе, химическое упрочнение никелем применяют для деталей топливной аппаратуры, силу- миновых корпусов гидравлических насосов, золотников и поршней гидравлических агрегатов из дуралюмина Д1.
Химическое никелирование рекомендуется использовать для защиты деталей, работающих в условиях среднего и повышенного коррозионного воздействия, вместо многослойных гальванических покрытий никель - хром и медь - никель - хром; это экономит цветные металлы. Химический способ успешно применяют при покрытии никелем керамики, пластмассы и других диэлектриков для создания металлически проводящей IT поверхности. Такое никелирование применяют также для деталей из алюминия и его сплавов, титана и керамики, чтобы получить возможность паять их мягкими припоями. На некоторых предприятиях химическое никелирование позволило заменить дорогие высоколегированные стали, работающие при температуре до 600 °С, менее легированными.
Термически обработанные никелевые покрытия вследствие их большой твердости, хорошей прирабатываемости, высокой износостойкости, возможности нанесения на различные детали сложного профиля должны найти широкое применение в машиностроении для повышения надежности и долговечности деталей машин.
Химическое хромирование применяют для упрочнения деталей машин и инструментов. Таким путем целесообразно упрочнять режущие инструменты, предназначенные для работы с малыми стружками и повышенными скоростями резания, а также измерительные инструменты сложного профиля. Последние перед хромированием обезжиривают и декапируют в 50 %-м растворе соляной кислоты. Хромированные химическим способом и затем нитроцементованные резцы не уступают по качеству алмазным расточным резцам. Химическое упрочнение особенно эффективно для деталей сложных форм, так как стоимость его не зависит от формы деталей.
Лакокрасочные покрытия. Применяют разнообразные лакокрасочные материалы, различающиеся по химическому составу, назначению и свойствам. Надежная и длительная защита металла от коррозии и дерева от гниения достигается в том случае, если покрытие сплошное, газо- и водонепроницаемое, обладает хорошей сцепляемостью с покрываемой поверхностью, достаточной сопротивляемостью к механическим деформациям и химическим воздействиям, сопротивляемостью истиранию, действию тепла, холода, солнечного света; часто к лакокрасочным покрытиям предъявляются требования повышенной стойкости против действия кислот, масла, бензина.
Для удовлетворения всех этих требований в машиностроении применяют многослойные покрытия, каждый слой которых имеет свое назначение. Непосредственно на поверхность заготовки наносят слой грунта толщиной 15 ... 25 мкм. Он хорошо сцепляется с поверхностью и защищает ее от коррозии. На грунт наносят до четырех слоев шпаклевки, которая выравнивает дефекты поверхности (поры, царапины, углубления). Шпаклевка должна быть таердой, хорошо сцепляться с грунтом и поддаваться механической обработке (обычно шлифованию). На шпаклевку наносят краску или слой эмали, которые улучшают внешний вид изделий, а также повышают его твердость и сопротивляемость различным воздействиям. При отсутствии дефектов поверхности краску ихи эмаль можно наносить непосредственно на груит. Число слоев краски или эмали от двух до шести, толщина слоя 30 ... 80 мкм.
Технологический процесс окраски включает операции подготовки поверхности, нанесения грунта, шпаклевки, краски или эмали, сушки и обработки покрытия. Все операции, связанные с подготовкой к окраске и окраской детали, механизированы или автоматизированы. Трудоемкий и длительный процесс естественной или коллекционной сушки заменяют терморадиационной сушкой. Окраску кистью, окунанием или механическим распылением заменяют окраской распылением в электростатическом поле. Все это позволяет получать прочные слои краски, хорошо защищающие рабочие поверхности деталей от внешних воздействий, повышает срок службы деталей, особенно из тонколистовых материалов. Испытания показывают, что при окраске в электрическом поле и сушке в терморадиационной камере детали и узлы более коррозионно-стойки, чем при обычных окраске и сушке.
Лакокрасочные покрытия постоянно совершенствуют, и область их применения расширяется. Например, в машиностроении их используют для защиты материалов, изделий и оборудования, эксплуатируемых в условиях тропического климата. НИИтрак- торсельхозмаш установил, что лучшими защитными свойствами для сельскохозяйственных машин, работающих в этих условиях, обладают алкидно-меламиновые эмали, синтетические автоэмали и эмали О-ГФ-МЛ-4-2 зеленого цвета. Применение фосфатирую- щего грунта ВЛ-08 в сочетании с грунтом В-329 значительно улучшает стойкость покрытий. Внедрение указанных эмалей и грунтов позволяет улучшить товарный вид машин, повысить их защитные свойства и в 2 раза удлинить срок службы покрытий по сравнению с глифталиевыми эмалями.
Покрытие деталей пластмассами. Пластмассовые покрытия применяют для защиты от коррозии химической аппаратуры и других изделий, а также для выравнивания неровностей их поверхностей. По химической стойкости к действию самых агрессивных сред, таких, как концентрированные кислоты и окислители, многие пластмассы превосходят даже благородные металлы (золото и платину). Пленки пластмассы наносят на поверхности деталей машин вихревым или газопламенным напылением или облицовкой листовыми материалами. Для покрытия деталей газопламенным и вихревым методами пригодны только термопластичные материалы в виде мелкодисперсного порошка, который при нагреве переходит в вязкотекучее состояние без существенного разложения, а необходимые физико-механические и химические свойства приобретает после охлаждения.
Ниже указаны материалы, применяемые для покрытия деталей, и температура, °С заготовки перед напылением.
Полиэтилен:
высокого давления……………………………………………………………………………………...180…200
низкого давления……………………………………………………………………………………….200…220
Полипропилен………………………………………………………………………………………...…220…240
Фторопласт-3……………………………………………………………………………………………260…270
Фторопласт-4………………………………………………………………………...………………….280…300
Процесс нанесения напылением пластмасс аналогичен процессу металлизации напылением, отличаясь от него лишь нагревом заготовок до указанной температуры.
Защитные покрытия обычно делают многослойными. Толщина покрытия зависит от назначения детали и напыляемого материала. При использовании полиэтилена хорошую защиту от коррозии дает покрытие толщиной 0,25 ... 0,35 мм, при использовании фторопласта-3 - покрытие толщиной 0,18 ... 0,25 мм. Чтобы придать поверхности шероховатость, необходимую для лучшего сцепления с покрытием, и очистить ее от окалины, поверхность подвергают дробеструйной обработке, после чего очищают от пыли, масляных плтен и других загрязнений, а затем фосфатируют. Поверхности заготовки, не подлежащие покрытию, защищают металлической фольгой, жестью и другими материалами, а отверстия закрывают пробками. Перед напылением заготовки нагревают (до температуры на 30 ... 50 °С выше температуры плавления пластмассы) в шкафу, обогреваемом газом или электричеством, до температуры 400 °С. Сильный перегрев заготовки приводит к разрушению пластмасс.
Влажность порошка для напыления должна быть не более 0,3 %, размер зерна не более 0,2 мм. Для окраски порошком полиэтилена в него добавляют I - 1,5 % пигмента и 1,5 - 4,0 % двуокиси титана и перемешивают в шаровой мельнице до получения однородного цвета (в течение 40 ... 60 мин.). Методом вихревого напыления можно наносить и многослойные покрытия. Для этого рядом с нагревательным шкафом располагают две установки для напыления, содержащие соответствующие порошки, и напыляют слой сначала одного, а затем другого порошка. Оплавление и охлаждение обычные.
Вихревым и эжекционным напылением можно покрывать детали из различных металлов и их сплавов (сталь, чугун, алюминий), из керамики и других материалов, выдерживающих нагрев до температуры 300 - 500 °С (табл. 9.20).