
- •А.Г. Суслов
- •Рецензенты:
- •Кафедра «Технология машиностроения» Тульского государственного университета
- •Глава 4 технологическое обеспечение качества изделий машиностроения 6
- •Глава 5 технологическая производительность труда и себестоимость изделий. Экономическая эффективность. 41
- •Глава 6 методология разработки технологических процессов изготовления изделий в машиностроении 72
- •Глава 7 Технология изготовления различных деталей 111
- •Глава 10 совершенствование существующих и создание новых технологических методов обработки деталей машин и технологий 177
- •Глава 11 технологическая подготовка производства 200
- •Глава 12 технология восстановления деталей машин 241
- •Глава 4 технологическое обеспечение качества изделий машиностроения
- •4.1. Припуски на обработку
- •4.2. Обеспечение качества деталей на стадии технологической подготовки производства
- •4.7. Значения коэффициентов формулы (4.16)
- •4.1. Возможности методов обработки в обеспечении точности размеров и параметров качества плоских поверхностей деталей машин
- •4.2. Возможности методов обработки в обеспечении точности размеров и параметров качества наружных поверхностей вращения деталей машин
- •4.3. Возможности методов обработки в обеспечении точности размеров и параметров качества внутренних поверхностей вращения деталей машин
- •4.4. Возможности методов обработки по обеспечению точности зубьев и параметров качества их рабочих поверхностей
- •4.5. Возможности методов обработки по обеспечению точности шлицев и параметров качества их рабочих поверхностей
- •4.6. Возможности методов обработки по обеспечению точности зубьев и параметров качества их рабочих поверхностей
- •4.8. Значения параметра Cx для различных методов чистовой обработки
- •4.3 Обеспечение качества деталей при изготовлении
- •4.4. Обеспечение качества изделий при сборке
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 4-й главе
- •Глава 5 технологическая производительность труда и себестоимость изделий. Экономическая эффективность.
- •5.1 Технологическая производительность труда и техническое нормирование
- •5.2. Технологическая себестоимость
- •5.3. Функционально-стоимостной анализ технологических процессов
- •5.1. Перечень технико-экономической информации, необходимой для проведения фса технологического процесса
- •5.2. Структурно-стоимостная модель технологического процесса
- •5.4. Оценка экономической эффективности
- •5.3. Значение коэффициента
- •5.4. Значение коэффициента полных затрат труда
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 5-й главе
- •Глава 6 методология разработки технологических процессов изготовления изделий в машиностроении
- •6.1 Выбор заготовок для изготовления деталей машин
- •6.2 Назначение технологических баз при проектировании технологических процессов
- •6.3 Установление последовательности и выбор методов обработки поверхностей заготовок
- •6.4 Разработка технологических процессов изготовления деталей машин
- •6.5 Разработка технологических процессов сборки изделий
- •6.6 Выбор технологического оборудования, оснастки и средств контроля при разработке технологического процесса
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 6-й главе
- •Рекомендуемая тематика лабораторных работ и практических занятий по основам технологии машиностроения
- •Часть II Технологические методы и процессы производства изделий машиностроения
- •Глава 7 Технология изготовления различных деталей
- •7.1 Технология изготовления валов.
- •Выбор заготовок и технологических баз.
- •Выбор оборудования и оснастки
- •Маршрут изготовления деталей типа тел вращения: Валов, шпинделей, ходовых винтов
- •7.1. Маршрут изготовления вала в условиях мелкосерийного производства
- •7.2. Маршрут изготовления вала в условиях крупносерийного производства
- •7.3. Маршрут изготовления шпинделя в условиях серийного производства
- •7.4. Маршрут изготовления ходового винта токарного станка 16к20 в условиях серийного производства
- •7.2 Технология изготовления деталей зубчатых и червячных передач и методы обработки их поверхностей Конструктивная характеристика деталей и технические условия на их изготовление
- •Материалы и способы получения заготовок деталей зубчатых и червячных передач
- •Обработка отверстий
- •Обработка зубьев цилиндрических зубчатых колес
- •Маршрут изготовления зубчатых колес
- •7.5. Маршрут изготовления зубчатого колеса в мелкосерийном производстве
- •7.3 Технология изготовления корпусных деталей Служебное назначение корпусов и технические условия на их изготовление
- •Материал и способы получения заготовок
- •Обработка корпусных деталей
- •9.5. Комбинированные методы улучшения качества поверхности с помощью лазерной обработки
- •Параметры режима лазерного облучения, используемого для обработки материалов
- •Влияние видов покрытия на лазерное упрочнение поверхности заготовки из стали 40х
- •Режимы лазерной обработки на установках серии «Квант»
- •Влияние лазерного упрочнения на микротвердость сталей у8а и х12м
- •Изменение микротвердости поверхности заготовки в зависимости от числа повторных облучений
- •Энергия излучения, Дж, при лазерной обработке заготовок из твердых сплавов в зависимости от содержания кобальта для нормального зерна
- •Параметры лазерной обработки заготовок из твердого сплава в зависимости от содержания кобальта для очень мелкого зерна
- •. Параметры лазерной обработки заготовок из твердого сплава в зависимости от содержания кобальта для мелкого зерна
- •9.15. Износ, мкм, поверхности заготовки после различных видов обработки
- •9.16. Фреттинг-износ, мкм, после лазерной обработки заготовки из стали
- •9.5 Гальванические способы нанесения покрытий
- •9.17. Основные виды гальванических покрытий и области их применения
- •9.18. Состав хромовых электролитов
- •9.6 Химические способы нанесения покрытий
- •9.19. Состав ванны и режимы нанесения химических покрытий
- •9.20. Пластмассы для покрытия деталей вихревым и эжекционным способами
- •9.7 Наплавка и напыление материала
- •9.21. Электродные материалы и флюсы, применяемые при механизированной наплавке
- •9.8 Выбор способов повышения долговечности деталей машин
- •9.22. Применение и режимы газовой металлизации
- •9.23. Выбор способов повышения долговечности деталей машин
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 9-й главе
- •Глава 10 совершенствование существующих и создание новых технологических методов обработки деталей машин и технологий
- •10.1. Совершенствование технологических методов обработки деталей машин
- •10.2.Создание новых технологических методов обработки и процессов изготовления и ремонта изделий машиностроения
- •10.3. Наукоемкие конкурентоспособные технологии в машиностроении
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 10-й главе
- •Глава 11 технологическая подготовка производства
- •11.1. Организация технологической подготовки производства
- •Технологическая подготовка производства при проектировании изделия
- •Технологическая подготовка производства опытных образцов и единичных изделий
- •Технологическая подготовка производства серийных изделий
- •11.2 Оформление технологической документации
- •11.3 Заполнение маршрутных карт
- •11.3 Особенности технологических процессов и оформление технологической документации при обработке заготовок на станках с чпу и многоцелевых станках
- •11.4 Особенности разработки технологических процессов и оформления
- •11.5 Особенности разработки технологических процессов и заполнение технологической документации при обработке заготовок на автоматических линиях
- •Содержание граф при написании техпроцесса обработки заготовки на автоматах и полуавтоматах
- •11.6.Особенности разработки технологических процессов для гибких производств
- •11.7 Автоматизация проектирования технологических процессов
- •11.8 Технологическая подготовка технической реконструкции машиностроительных предприятий
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 11-й главе
- •Глава 12 технология восстановления деталей машин
- •12.1. Восстановление деталей машин термоупругопластическим деформированием
- •12.2. Восстановление деталей машин пластическим вытеснением материала
- •12.3 Восстановление деталей машин электромеханической обработкой
- •12.4. Восстановление деталей машин плазменными методами
- •12.5. Восстановление деталей машин наплавкой, наваркой
- •12.6. Подготовка восстанавливаемых поверхностей детали под нанесение покрытий
- •Способы подготовки поверхностей под газотермическое покрытие
- •12.7 Механическая обработка восстановленных поверхностей деталей машин
- •Относительная себестоимость обработки покрытий алмазным кругом при круглом наружном шлифовании
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 12-й главе
10.3. Наукоемкие конкурентоспособные технологии в машиностроении
Наукоемкими конкурентоспособными считаются такие технологии, которые базируются на последних достижениях науки; системном построении; моделировании; оптимизации себестоимости изготовления, эксплуатации и ремонта изделия; новых и комбинированных наукоемких методах обработки и техпроцессах; компьютерной технологической среде и комплексной автоматизации производства, что позволяет им быть конкурентоспособными.
Реализация таких технологий требует соответствующего технического оснащения (прецизионное высокоточное оборудование, технологи чес кал оснастка и инструмент для механической, физико-химической и комбинированной обработки, в том числе и по нанесению различных покрытий, автоматизированные системы диагностики и контроля, компьютерные сети) и кадрового обеспечения (высокая квалификация всех работников, научное консультирование и др.).
Как правило, наукоемкие технологии в машиностроении применяются для повышения функциональных свойств изделий и их конкурентоспособности.
Структурно это представлено на рис. 10.10.
Основным свойством наукоемких технологий являются результаты фундаментальных и прикладных исследований, на которых они базируются.
Системность предполагает диалектическую взаимосвязь, взаимодействие всех элементов технологической системы, всех основных процессов, явлений и составляющих. Системность особо важна как требование прецизионности и соответствие этим требованиям всех структурных элементов технологической системы обработки и сборки (оборудование, инструмент, обрабатываемый материал, оснастка, измерения, диагностика, работа исполнительных органов).
Рис. 10.10 Структура наукоёмких конкурентоспособных технологий
Важнейшим свойством наукоемких технологий, безусловно, является новый техпроцесс. Он доминирует во всей технологической системе и должен отвечать самым разнообразным требованиям, но, главное, быть потенциально способным обеспечить достижение нового уровня функциональных свойств изделия. Здесь богатыми возможностями обладают те устойчивые и надежные техпроцессы, в которых эффективно используются физические, химические, электрохимические и другие явления в сочетании со специальными свойствами инструмента, технологической среды, например, криогенное резание, диффузионное формообразование изделий и т.п.
Разработка новых техпроцессов имеет поэтапный характер:
1. На этапе маркетинга оценивается изделие как совокупность потребительских свойств, а затем определяется уровень тех потребительских свойств изделия, которые в состоянии обеспечить его конкурентоспособность,
2. Исходя из этого, определяются требования к качеству изделий, узлов, сборке в соответствии с уровнем функциональных, экологических и эстетических свойств и оптимальной их долговечности.
3. Выделение из требуемых геометрических, физико-химических параметров качества поверхностного слоя деталей тех, достижение которых требует нетрадиционных решений, как при изготовлении, так и эксплуатации.
4. Определение традиционных критериев для уровня характеристик нетрадиционного техпроцесса, потенциально способного обеспечить получение требуемых функциональных, эстетических и экологических свойств изделия.
5. Выявление предпосылок создания нового техпроцесса на базе использования традиционных и нетрадиционных способов обработки и технического оснащения.
6. Создание физической и математической модели техпроцесса и их виртуальное, теоретическое и экспериментальное исследование,
7. Многопараметрическая оптимизация техпроцесса (физические, технологические, экономические критерии).
8. Создание систем диагностики техпроцесса и его технического оснащения.
9. Разработка технологического процесса.
10. Оценка соответствия реального уровня функциональных, эстетических, экономических свойств изделия требуемому.
Несомненно, существенным признаком наукоемких технологий является комплексная автоматизация, базирующаяся на компьютерном управлении всеми процессами проектирования, изготовления и сборки, на физическом, геометрическом и математическом моделировании, всестороннем анализе моделей процесса или его составляющих.
Наличие рассматриваемого признака требует системного подхода к ее компьютерно-интеллектуальной среде, т.е. перехода к системам CAD/CAM System. Таким путем обеспечивается сочетание гибкости и автоматизации, прецизионности и производительности.
Системный подход предполагает использование не отдельных математических моделей, а системы взаимосвязанных моделей с непременной параметрической и структурной оптимизацией. Например, параметрическая оптимизация преследует цель минимизации ряда характеристик процесса размерной обработки, прежде всего энергетических затрат, минимизации толщины срезов, силы резания и уровня температуры, интенсивности окислительных процессов и т.д.
Рис. 10.11. База наукоемких технологий обработки материалов
Для наукоемкой технологии нужна высокая степень («глубина») оптимальности для сравнительно узкого конкретного диапазона условий и требований. Базой такой оптимальности могут быть только глубокие специальные исследования в этой области, разработка автоматизированных систем научного обеспечения, включая использование мирового опыта, специальных методов оптимизации, методов достижения прецизионности, технологического обеспечения функциональных свойств и др.
Важную роль играет техническое обеспечение наукоемких технологий, в рамках которого в качестве основных условий реализации выступают прецизионность оборудования, инструмента, оснастки, системы диагностики и контроля. Все это происходит в рамках основных направлений развития, например, технологии размерной обработки (рис. 10.11) прежде всего для создания новых техпроцессов, прецизионного оборудования и средств технологического обеспечения, новых форм построения технологических процессов. Результаты развития каждого из этих направлений в сочетании с новейшими достижениями науки и смежных областей техники являются естественными источниками наукоемких технологий.
При этом прогресс в создании техпроцессов наукоемких конкурентоспособных технологий и традиционных технологий, является определяющим и характеризуется наиболее высокими темпами повышения производительности и качества.
Важнейшим свойством наукоемких технологий является их кадровое обеспечение.
Разработка и реализация таких технологий требует высокообразованных специалистов на всех стадиях их жизненного цикла. Практически все специалисты, включая станочников и операторов, должны иметь высшее образование. Это хорошо просматривается на примере многих японских, американских и западноевропейских фирм.
Таким образом, технология машиностроения подошла к новому этапу своего развития - новым наукоемким технологиям, реализация которых позволяет машиностроителям создавать конкурентоспособные изделия.