
- •А.Г. Суслов
- •Рецензенты:
- •Кафедра «Технология машиностроения» Тульского государственного университета
- •Глава 4 технологическое обеспечение качества изделий машиностроения 6
- •Глава 5 технологическая производительность труда и себестоимость изделий. Экономическая эффективность. 41
- •Глава 6 методология разработки технологических процессов изготовления изделий в машиностроении 72
- •Глава 7 Технология изготовления различных деталей 111
- •Глава 10 совершенствование существующих и создание новых технологических методов обработки деталей машин и технологий 177
- •Глава 11 технологическая подготовка производства 200
- •Глава 12 технология восстановления деталей машин 241
- •Глава 4 технологическое обеспечение качества изделий машиностроения
- •4.1. Припуски на обработку
- •4.2. Обеспечение качества деталей на стадии технологической подготовки производства
- •4.7. Значения коэффициентов формулы (4.16)
- •4.1. Возможности методов обработки в обеспечении точности размеров и параметров качества плоских поверхностей деталей машин
- •4.2. Возможности методов обработки в обеспечении точности размеров и параметров качества наружных поверхностей вращения деталей машин
- •4.3. Возможности методов обработки в обеспечении точности размеров и параметров качества внутренних поверхностей вращения деталей машин
- •4.4. Возможности методов обработки по обеспечению точности зубьев и параметров качества их рабочих поверхностей
- •4.5. Возможности методов обработки по обеспечению точности шлицев и параметров качества их рабочих поверхностей
- •4.6. Возможности методов обработки по обеспечению точности зубьев и параметров качества их рабочих поверхностей
- •4.8. Значения параметра Cx для различных методов чистовой обработки
- •4.3 Обеспечение качества деталей при изготовлении
- •4.4. Обеспечение качества изделий при сборке
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 4-й главе
- •Глава 5 технологическая производительность труда и себестоимость изделий. Экономическая эффективность.
- •5.1 Технологическая производительность труда и техническое нормирование
- •5.2. Технологическая себестоимость
- •5.3. Функционально-стоимостной анализ технологических процессов
- •5.1. Перечень технико-экономической информации, необходимой для проведения фса технологического процесса
- •5.2. Структурно-стоимостная модель технологического процесса
- •5.4. Оценка экономической эффективности
- •5.3. Значение коэффициента
- •5.4. Значение коэффициента полных затрат труда
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 5-й главе
- •Глава 6 методология разработки технологических процессов изготовления изделий в машиностроении
- •6.1 Выбор заготовок для изготовления деталей машин
- •6.2 Назначение технологических баз при проектировании технологических процессов
- •6.3 Установление последовательности и выбор методов обработки поверхностей заготовок
- •6.4 Разработка технологических процессов изготовления деталей машин
- •6.5 Разработка технологических процессов сборки изделий
- •6.6 Выбор технологического оборудования, оснастки и средств контроля при разработке технологического процесса
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 6-й главе
- •Рекомендуемая тематика лабораторных работ и практических занятий по основам технологии машиностроения
- •Часть II Технологические методы и процессы производства изделий машиностроения
- •Глава 7 Технология изготовления различных деталей
- •7.1 Технология изготовления валов.
- •Выбор заготовок и технологических баз.
- •Выбор оборудования и оснастки
- •Маршрут изготовления деталей типа тел вращения: Валов, шпинделей, ходовых винтов
- •7.1. Маршрут изготовления вала в условиях мелкосерийного производства
- •7.2. Маршрут изготовления вала в условиях крупносерийного производства
- •7.3. Маршрут изготовления шпинделя в условиях серийного производства
- •7.4. Маршрут изготовления ходового винта токарного станка 16к20 в условиях серийного производства
- •7.2 Технология изготовления деталей зубчатых и червячных передач и методы обработки их поверхностей Конструктивная характеристика деталей и технические условия на их изготовление
- •Материалы и способы получения заготовок деталей зубчатых и червячных передач
- •Обработка отверстий
- •Обработка зубьев цилиндрических зубчатых колес
- •Маршрут изготовления зубчатых колес
- •7.5. Маршрут изготовления зубчатого колеса в мелкосерийном производстве
- •7.3 Технология изготовления корпусных деталей Служебное назначение корпусов и технические условия на их изготовление
- •Материал и способы получения заготовок
- •Обработка корпусных деталей
- •9.5. Комбинированные методы улучшения качества поверхности с помощью лазерной обработки
- •Параметры режима лазерного облучения, используемого для обработки материалов
- •Влияние видов покрытия на лазерное упрочнение поверхности заготовки из стали 40х
- •Режимы лазерной обработки на установках серии «Квант»
- •Влияние лазерного упрочнения на микротвердость сталей у8а и х12м
- •Изменение микротвердости поверхности заготовки в зависимости от числа повторных облучений
- •Энергия излучения, Дж, при лазерной обработке заготовок из твердых сплавов в зависимости от содержания кобальта для нормального зерна
- •Параметры лазерной обработки заготовок из твердого сплава в зависимости от содержания кобальта для очень мелкого зерна
- •. Параметры лазерной обработки заготовок из твердого сплава в зависимости от содержания кобальта для мелкого зерна
- •9.15. Износ, мкм, поверхности заготовки после различных видов обработки
- •9.16. Фреттинг-износ, мкм, после лазерной обработки заготовки из стали
- •9.5 Гальванические способы нанесения покрытий
- •9.17. Основные виды гальванических покрытий и области их применения
- •9.18. Состав хромовых электролитов
- •9.6 Химические способы нанесения покрытий
- •9.19. Состав ванны и режимы нанесения химических покрытий
- •9.20. Пластмассы для покрытия деталей вихревым и эжекционным способами
- •9.7 Наплавка и напыление материала
- •9.21. Электродные материалы и флюсы, применяемые при механизированной наплавке
- •9.8 Выбор способов повышения долговечности деталей машин
- •9.22. Применение и режимы газовой металлизации
- •9.23. Выбор способов повышения долговечности деталей машин
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 9-й главе
- •Глава 10 совершенствование существующих и создание новых технологических методов обработки деталей машин и технологий
- •10.1. Совершенствование технологических методов обработки деталей машин
- •10.2.Создание новых технологических методов обработки и процессов изготовления и ремонта изделий машиностроения
- •10.3. Наукоемкие конкурентоспособные технологии в машиностроении
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 10-й главе
- •Глава 11 технологическая подготовка производства
- •11.1. Организация технологической подготовки производства
- •Технологическая подготовка производства при проектировании изделия
- •Технологическая подготовка производства опытных образцов и единичных изделий
- •Технологическая подготовка производства серийных изделий
- •11.2 Оформление технологической документации
- •11.3 Заполнение маршрутных карт
- •11.3 Особенности технологических процессов и оформление технологической документации при обработке заготовок на станках с чпу и многоцелевых станках
- •11.4 Особенности разработки технологических процессов и оформления
- •11.5 Особенности разработки технологических процессов и заполнение технологической документации при обработке заготовок на автоматических линиях
- •Содержание граф при написании техпроцесса обработки заготовки на автоматах и полуавтоматах
- •11.6.Особенности разработки технологических процессов для гибких производств
- •11.7 Автоматизация проектирования технологических процессов
- •11.8 Технологическая подготовка технической реконструкции машиностроительных предприятий
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 11-й главе
- •Глава 12 технология восстановления деталей машин
- •12.1. Восстановление деталей машин термоупругопластическим деформированием
- •12.2. Восстановление деталей машин пластическим вытеснением материала
- •12.3 Восстановление деталей машин электромеханической обработкой
- •12.4. Восстановление деталей машин плазменными методами
- •12.5. Восстановление деталей машин наплавкой, наваркой
- •12.6. Подготовка восстанавливаемых поверхностей детали под нанесение покрытий
- •Способы подготовки поверхностей под газотермическое покрытие
- •12.7 Механическая обработка восстановленных поверхностей деталей машин
- •Относительная себестоимость обработки покрытий алмазным кругом при круглом наружном шлифовании
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 12-й главе
9.15. Износ, мкм, поверхности заготовки после различных видов обработки
Материал заготовки,сталь |
После термообработки (ТО) |
ТО + лазерная закалка |
ТО + лазерная закалка с цианированием |
40Х |
56,2 |
41,4 |
35,1 |
У8А |
44,2 |
37,0 |
23,2 |
У10А |
42,0 |
34,1 |
22,4 |
ХВГ |
30,6 |
25,6 |
19,3 |
Х12М |
27,1 |
22,0 |
15,6 |
Переходная поверхность
Рис. 9.21. Схема упрочнениия галтелей валов
Рис. 9.22. Кривые усталости ступенчатых обраэцон из стали 45 в зависимости от вида упрочнения переходной поверхности вала:
1 - без упрочняющей обработки; 2 ~ упрочнение роликом;
3 - электромеханическое упрочнение; 4 - лазерное упрочнение
В общей проблеме трения и изнашивания фреттинг занимает особое место в связи с широким комплексом физико-химических явлений. Лазерная обработка может эффективно повысить фреттингостойкость мест сопряжений деталей машины.
В табл. 9.16 приведены результаты влияния лазерного облучения на фреттинг-износ заготовок из сталей с различным содержанием углерода. Термоупрочнение проводили на установке «Квант-16». Режим обработки, энергия луча в импульсе 19 Дж, длительность импульса 7 ... 103 с, частота следования импульсов 1 Гц. Лазерная обработка во всех случаях приводит к уменьшению глубины повреждения, причем, чем больше процентное содержание углерода в стали, тем больше эффект. Глубина фреттинг- повреждения заготовки из стали 30 уменьшалась в 2,4 раза, из стали 50 - в 1,5 раза, из стали 70 - в 3,6 раза, из стали У10 - в 4,6 раза.
9.16. Фреттинг-износ, мкм, после лазерной обработки заготовки из стали
Материал заготовки, сталь |
А = 34 мкм,
|
А = 34 мкм, =113 МПа |
Л = 112 мкм, = 35 МПа |
Л = 112 мкм, = 113 МПа |
|||||
до ЛО |
после Л О |
доЛО |
после Л О |
до ЛО |
после ЛО |
до ЛО |
после ЛО |
||
10 |
12 |
8,25 |
7,5 |
3,75 |
22 |
14,5 |
33 |
20,5 |
|
30 |
15 |
9,5 |
10 |
5,5 |
21,5 |
8,5 |
38,0 |
13,5 |
|
50 |
88 |
25 |
5 |
2,5 |
16 |
6,5 |
21 |
17 |
|
70 |
7,5 |
10,5 |
5,25 |
15 |
6 |
4,5 |
22 |
б |
|
У10 |
15 |
3,25 |
18 |
6,25 |
6 |
2,5 |
23,5 |
10 |
Содержание углерода, %
Рис. 9.23. Зависимость минимальной глубины фреттинг-повреждений
от содержания углерода в стали:
А - 112 мкм; Р = 1,0 Я; а = 35 М1а; 7 - до J10; 2 - после J10
Содержание углерода, %
Рис. 9.24. Зависимость максимальной глубины фреттинг-повреждений от содержания углерода в стали:
А = 112 мкм; Р = 3,3 Я; о = 113 МПа; 1 - до ЛО; 2 - после ЛО
Увеличение амплитуды микроперемещений приводит к параболической зависимости износа от содержания углерода в стали. Для исходной поверхности оптимум соответствует стали с содержанием углерода 0,7 %. Лазерная обработка несколько смещает точку, соответствующую минимальному износу, в сторону уменьшения содержания углерода в стали (до 0,5 - 0,6 %) (рис. 9.23). Лазерная обработка наиболее эффективна для сталей с содержанием углерода от 0,3 до 0,5 %. Износостойкость в этом случае возрастает в 4 - 5 раз. С ростом нагрузки в месте контакта повышение износостойкости проявляется еще существеннее для всех рассматриваемых сталей (рис. 9.24).