
- •А.Г. Суслов
- •Рецензенты:
- •Кафедра «Технология машиностроения» Тульского государственного университета
- •Глава 4 технологическое обеспечение качества изделий машиностроения 6
- •Глава 5 технологическая производительность труда и себестоимость изделий. Экономическая эффективность. 41
- •Глава 6 методология разработки технологических процессов изготовления изделий в машиностроении 72
- •Глава 7 Технология изготовления различных деталей 111
- •Глава 10 совершенствование существующих и создание новых технологических методов обработки деталей машин и технологий 177
- •Глава 11 технологическая подготовка производства 200
- •Глава 12 технология восстановления деталей машин 241
- •Глава 4 технологическое обеспечение качества изделий машиностроения
- •4.1. Припуски на обработку
- •4.2. Обеспечение качества деталей на стадии технологической подготовки производства
- •4.7. Значения коэффициентов формулы (4.16)
- •4.1. Возможности методов обработки в обеспечении точности размеров и параметров качества плоских поверхностей деталей машин
- •4.2. Возможности методов обработки в обеспечении точности размеров и параметров качества наружных поверхностей вращения деталей машин
- •4.3. Возможности методов обработки в обеспечении точности размеров и параметров качества внутренних поверхностей вращения деталей машин
- •4.4. Возможности методов обработки по обеспечению точности зубьев и параметров качества их рабочих поверхностей
- •4.5. Возможности методов обработки по обеспечению точности шлицев и параметров качества их рабочих поверхностей
- •4.6. Возможности методов обработки по обеспечению точности зубьев и параметров качества их рабочих поверхностей
- •4.8. Значения параметра Cx для различных методов чистовой обработки
- •4.3 Обеспечение качества деталей при изготовлении
- •4.4. Обеспечение качества изделий при сборке
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 4-й главе
- •Глава 5 технологическая производительность труда и себестоимость изделий. Экономическая эффективность.
- •5.1 Технологическая производительность труда и техническое нормирование
- •5.2. Технологическая себестоимость
- •5.3. Функционально-стоимостной анализ технологических процессов
- •5.1. Перечень технико-экономической информации, необходимой для проведения фса технологического процесса
- •5.2. Структурно-стоимостная модель технологического процесса
- •5.4. Оценка экономической эффективности
- •5.3. Значение коэффициента
- •5.4. Значение коэффициента полных затрат труда
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 5-й главе
- •Глава 6 методология разработки технологических процессов изготовления изделий в машиностроении
- •6.1 Выбор заготовок для изготовления деталей машин
- •6.2 Назначение технологических баз при проектировании технологических процессов
- •6.3 Установление последовательности и выбор методов обработки поверхностей заготовок
- •6.4 Разработка технологических процессов изготовления деталей машин
- •6.5 Разработка технологических процессов сборки изделий
- •6.6 Выбор технологического оборудования, оснастки и средств контроля при разработке технологического процесса
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 6-й главе
- •Рекомендуемая тематика лабораторных работ и практических занятий по основам технологии машиностроения
- •Часть II Технологические методы и процессы производства изделий машиностроения
- •Глава 7 Технология изготовления различных деталей
- •7.1 Технология изготовления валов.
- •Выбор заготовок и технологических баз.
- •Выбор оборудования и оснастки
- •Маршрут изготовления деталей типа тел вращения: Валов, шпинделей, ходовых винтов
- •7.1. Маршрут изготовления вала в условиях мелкосерийного производства
- •7.2. Маршрут изготовления вала в условиях крупносерийного производства
- •7.3. Маршрут изготовления шпинделя в условиях серийного производства
- •7.4. Маршрут изготовления ходового винта токарного станка 16к20 в условиях серийного производства
- •7.2 Технология изготовления деталей зубчатых и червячных передач и методы обработки их поверхностей Конструктивная характеристика деталей и технические условия на их изготовление
- •Материалы и способы получения заготовок деталей зубчатых и червячных передач
- •Обработка отверстий
- •Обработка зубьев цилиндрических зубчатых колес
- •Маршрут изготовления зубчатых колес
- •7.5. Маршрут изготовления зубчатого колеса в мелкосерийном производстве
- •7.3 Технология изготовления корпусных деталей Служебное назначение корпусов и технические условия на их изготовление
- •Материал и способы получения заготовок
- •Обработка корпусных деталей
- •9.5. Комбинированные методы улучшения качества поверхности с помощью лазерной обработки
- •Параметры режима лазерного облучения, используемого для обработки материалов
- •Влияние видов покрытия на лазерное упрочнение поверхности заготовки из стали 40х
- •Режимы лазерной обработки на установках серии «Квант»
- •Влияние лазерного упрочнения на микротвердость сталей у8а и х12м
- •Изменение микротвердости поверхности заготовки в зависимости от числа повторных облучений
- •Энергия излучения, Дж, при лазерной обработке заготовок из твердых сплавов в зависимости от содержания кобальта для нормального зерна
- •Параметры лазерной обработки заготовок из твердого сплава в зависимости от содержания кобальта для очень мелкого зерна
- •. Параметры лазерной обработки заготовок из твердого сплава в зависимости от содержания кобальта для мелкого зерна
- •9.15. Износ, мкм, поверхности заготовки после различных видов обработки
- •9.16. Фреттинг-износ, мкм, после лазерной обработки заготовки из стали
- •9.5 Гальванические способы нанесения покрытий
- •9.17. Основные виды гальванических покрытий и области их применения
- •9.18. Состав хромовых электролитов
- •9.6 Химические способы нанесения покрытий
- •9.19. Состав ванны и режимы нанесения химических покрытий
- •9.20. Пластмассы для покрытия деталей вихревым и эжекционным способами
- •9.7 Наплавка и напыление материала
- •9.21. Электродные материалы и флюсы, применяемые при механизированной наплавке
- •9.8 Выбор способов повышения долговечности деталей машин
- •9.22. Применение и режимы газовой металлизации
- •9.23. Выбор способов повышения долговечности деталей машин
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 9-й главе
- •Глава 10 совершенствование существующих и создание новых технологических методов обработки деталей машин и технологий
- •10.1. Совершенствование технологических методов обработки деталей машин
- •10.2.Создание новых технологических методов обработки и процессов изготовления и ремонта изделий машиностроения
- •10.3. Наукоемкие конкурентоспособные технологии в машиностроении
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 10-й главе
- •Глава 11 технологическая подготовка производства
- •11.1. Организация технологической подготовки производства
- •Технологическая подготовка производства при проектировании изделия
- •Технологическая подготовка производства опытных образцов и единичных изделий
- •Технологическая подготовка производства серийных изделий
- •11.2 Оформление технологической документации
- •11.3 Заполнение маршрутных карт
- •11.3 Особенности технологических процессов и оформление технологической документации при обработке заготовок на станках с чпу и многоцелевых станках
- •11.4 Особенности разработки технологических процессов и оформления
- •11.5 Особенности разработки технологических процессов и заполнение технологической документации при обработке заготовок на автоматических линиях
- •Содержание граф при написании техпроцесса обработки заготовки на автоматах и полуавтоматах
- •11.6.Особенности разработки технологических процессов для гибких производств
- •11.7 Автоматизация проектирования технологических процессов
- •11.8 Технологическая подготовка технической реконструкции машиностроительных предприятий
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 11-й главе
- •Глава 12 технология восстановления деталей машин
- •12.1. Восстановление деталей машин термоупругопластическим деформированием
- •12.2. Восстановление деталей машин пластическим вытеснением материала
- •12.3 Восстановление деталей машин электромеханической обработкой
- •12.4. Восстановление деталей машин плазменными методами
- •12.5. Восстановление деталей машин наплавкой, наваркой
- •12.6. Подготовка восстанавливаемых поверхностей детали под нанесение покрытий
- •Способы подготовки поверхностей под газотермическое покрытие
- •12.7 Механическая обработка восстановленных поверхностей деталей машин
- •Относительная себестоимость обработки покрытий алмазным кругом при круглом наружном шлифовании
- •Вопросы для самопроверки и промежуточного контроля знаний студентов по 12-й главе
Параметры режима лазерного облучения, используемого для обработки материалов
Активная среда |
А, мкм |
Режим работы |
Мощность, Вт |
v, Гц |
т-10 3S с |
Твердотельный лазер |
|||||
Рубин |
0,6943 |
Импульсный |
20 |
2 |
0,3-6 |
Неодимовое стекло |
1,06 |
То же |
25 |
1 |
0,5-10 |
Алюмоиттриевый гранат с неодимом |
1,06 1,06 |
То же Непрерывный |
200 300 |
100 - |
0,1-10 - |
Газовый лазер |
|||||
|
10,6 |
Импульсный |
500 |
1000 |
0,1-1000 |
|
10,6 |
Непрерывный |
2000 |
- |
- |
Аг |
0,49 |
То же |
50 |
- |
- |
Аг |
0,51 |
То же |
50 |
- |
- |
|
0,337 |
Импульсный |
- |
1000 |
0,01 |
Эффективность лазерного термоупрочнения зависит от способности материала превратить энергию лазерного излучения в тепловую. Количество поглощенной энергии зависит от отражательных свойств материала, наличия оксидных пленок, температуры и длины волны лазерного излучения. Чем меньше длина волны, тем лучше поглощается энергия. С уменьшением электрической проводимости и увеличением параметров шероховатости поглощение энергии лазерного излучения увеличивается; поглощающая способность материала повышается до 70 %.
Фосфатирование поверхности - наиболее эффективный способ увеличения поглощательной способности поверхности при лазерном облучении (табл. 9.7). При лазерной закалке центр закаленной зоны имеет черно-синий цвет, а края - серый.
Влияние видов покрытия на лазерное упрочнение поверхности заготовки из стали 40х
Метод обработки поверхности |
Толщина пленки, мкм |
Состояние закаленной зоны металла |
|
глубина, мм |
микротвердость, МПа |
||
Фосфатирование марганцевое |
8 ... 10 |
0,43 ... 0,5 |
5000 - 8000 |
Воронение |
5 ... 10 |
0,35 ...0,44 |
6000 |
Цинковый фосфат |
3 ...5 |
0,28 ... 0,35 |
5000 |
Аморфный фосфат |
1 ...2 |
0,2... 0,3 |
6500 |
Алюмохромофосфатные покрытия |
50 ... 80 |
0,4 ... 0,45 |
6000 |
Черное хромирование |
5... 10 1 |
0,35 ...0,45 |
6200 |
Количество таких легируемых элементов, как хром, марганец или молибден, влияет на закаливаемость; повышение микротвердости в зоне лазерного влияния наблюдается у сталей при малой дозе легирования.
Обработку непрерывным лазерным излучением ведут при определенной скорости сканирования луча по поверхности. С ростом плотности мощности и уменьшением относительных скоростей перемещения луча скорости охлаждения падают. В результате закаленная структура отпускается и твердость уменьшается. Максимальная твердость поверхностного слоя будет при достаточно высокой скорости охлаждения. Однако при низких скоростях перемещения луча увеличивается глубина закаленного слоя. Следовательно, режимы лазерной обработки оптимизируют в зависимости от требуемых функциональных свойств. Оптимизация режимов лазерного облучения приведена на рис. 9.19 и 9.20 для заготовок из стали 40 ХН.
Лазерная обработка заготовок из инструментальных сталей
Упрочнение
режущего инструмента локализовано в
режущих кромках, Малообъем- ность кромки
затрудняет теплоотвод в материал
заготовки. Оптимальный режим импульсной
обработки достигается при облучении
энергией излучения на 2 ... 3 Дж ниже Eyv.
При
непрерывном излучении подбирается
энергия для каждой марки стали, при
которой обеспечивается небольшое
оплавление поверхности заготовки.
Предварительная обработка поверхности
лазером, энергией на 5 ... 7 Дж меньше
оптимальной, улучшает
равномерность поглощения энергии
при повторном облучении. Аустенитные
и ферритные стали, не обнаруживающие
-фазовые
переходы, не подвергаются закалке
лазером.
Рис.
9.19. Зависимость микротвердости Нц
зоны нагрева от скорости v
при
интенсивности излучения 3530 (кривая 7);
5080 (кривая 2);
6272 (кривая 3) и 7938 Вт/
Рис. 9.20. Зависимость глубины z упрочненного слоя от скорости обработки v при интенсивности излучения 3530 (кривая 1); 5080 (кривая 2); 6272 (кривая 3) и 7938 Вт/см2 (кривая 4)
Лазерную закалку рекомендуется проводить в различных газовых средах (аргона, азота, углекислого газа). В одних случаях это предохраняет поверхность от обезуглероживания, в других, наоборот, насыщает углеродом, азотом и другими легирующими элементами.
Оптимальные режимы обработки заготовок из инструментальных стадей для лазерных установок серии «Квант» даны в твбл. 9.8.
При обработке фрез (из 8Х6ВФ, РФ1, Р6М5 и др.) лучом лазера их стойкость возрастает в 1,5-2 раза; заготовки из стали Р18Ф2К8М обрабатывают при плотности энергии 4 Дж/мм2 и4 = 2мм (табл. 9.9).
Основные требования, предъявленные к стали для изготовления штампов, - высокая износостойкость, теплостойкость, ударная вязкость. Создание оптимальных свойств поверхности зависит от исходной микрогеометрии, твердости и т.д. (табл. 9.10).
Качество обработки штамповых сталей импульсным излучением можно повысить повторным облучением (табл. 9.11).