
- •3. Виды электрической проводимости и их характеристики.
- •4. Основные методы измерения удельного сопротивления. Условия приприменимое методом Ван-дер-Пау.
- •5. Основные методы измерения удельного сопротивления. Измерение удельного сопротивления двухзондовым методом.
- •6. Основные методы измерения удельного сопротивления. Метод измерения удельного сопротивления.
- •7. Основные методы измерения удельного сопротивления. Условия применения четырехзондовым методом.
- •8. Бесконтактный метод удельного сопротивления.
- •9. Измерение подвижности и концентрации подвижности носителей заряда.
- •10. Эффект Холла.
- •11. Измерение эдс Холла. Эффекты, вызывающие погрешность.
- •12. Измерение эдс Холла метода Ван-дерПа.
- •13. Измерение тока Холла
- •14. Измерение подвижности методом магнитного сопротивления.
- •15. Виды диэлектриков и диэлектрическая проницаемость различных веществ.
- •16. Измерение диэлектрической проницаемости методом баллистического гальванометра.
- •17. Измерение диэлектрической проницаемости мостовым методом.
- •18. Измерение диэлектрической проницаемости жидкостным методом.
- •19. Измерение диэлектрической проницаемости жидкости абсолютным методом.
- •20. Измерение диэлектрической проницаемости порошков.
- •21. Измерение диэлектрической проницаемости порошков прямого измерения.
- •22. Измерение диэлектрической проницаемости в твердых материалах.
- •23. Термоэлектрические эффекты.
- •24. Эффект Зеебека и его практическое применение.
- •25. Эффект Пельтье и его практическое применение.
- •26. Определение коэффициента теплопроводности абсолютным методом.
- •27. Определение коэффициента теплопроводности относительным методом.
- •28. Схемы при интегральной и дифференциальной термо эдс.
- •29. Устройство и принцип работы жиромеров.
- •30. Электрохимические преобразователи и их виды.
- •32. Радиоактивные преобразовательные с термоэлектронной эмиссией и параллельно ионизационный преобразователь.
- •33. Химические сенсоры, область применения, принцип работы.
- •34. Сенсоры на основе твердых электролитов. Область применения, принцип работы.
- •35. Тепловые сенсоры. Область применения, принцип работы.
- •36. Массочувствительные сенсоры. Область применения.
- •37. Устройство, принцип действия асцилографов.
- •39. Цифровые измерительные приборы. Основные принципы построения, структурная схема.
- •40. Устройство и принцип работы электродинамических измерительных механизмов.
- •41. Устройство и принцип действия магнитно-электрических измерительных механизмов.
- •42. Устройство и принцип действия электромагнитных измерительных механизмов.
- •43. Устройство и принцип действия электростатического измерительного механизма.
- •44. Принцип действия индукционного вибрационного, биметаллического и теплового измерительных приборов.
- •45. Измерение температуры терморезисторами и термопарами.
- •46. Измерение электропроводности растворов электролитов. Понятие удельная, эквивалентная электропроводность. Закон Кольрауша. Факторы влияющие на точность измерения электропроводности растворов.
12. Измерение эдс Холла метода Ван-дерПа.
Измерение эффекта Холла классическим методом требует изготовления образцов правильной геометрической формы, что усложняет процедуру измерений. Для контроля образцов произвольной формы и для пленочных образцов наиболее удобным является метод Ван-дер-Пау, для реализации которого требуются однородные по толщине образцы, имеющие четыре точечных контакта, расположенных по периметру образца на его боковой поверхности.
Постоянная Холла в этом случае определяется по соотношению RH = ΔRABCD∙d/B, где ΔRABCD = ΔUBD/IAC — изменение сопротивления образца, вызванное магнитным полем, d —толщина образца. Подвижность рассчитывается на основе полученных RH и значения удельного сопротивления ρ, измеренных на данном образце по формуле μ = RH/ρ.
13. Измерение тока Холла
Метод тока Холла позволяет проводить измерения на более высокоомных материалах, чем метод ЭДС Холла. Этому способствует такое соотношение геометрических размеров образца, при котором его сопротивление между токовыми контактами ниже, чем при измерении ЭДС Холла. Небольшое различие в характеристиках половинок контактов практически не влияет на результаты измерений, тогда как небольшая асимметрия в расположении холловских контактов при измерении ЭДС приводит к образованию значительной неэквипотенциальности, которая затрудняет измерения.
Режим измерения тока Холла имеет место при Ez = 0, т.е. когда холловские грани образца закорочены. Теоретически это выполняется в бесконечном образце, а практически реализуется в диске Корбино (один электрод размещен в центре диска в виде оси, а второй - по ободу диска в виде кольца), а также в прямоугольном образце, к вытянутым сторонам которого прикладывается разность потенциалов, вызывающее электрический ток (рис.4.5). Отклонение носителей заряда под действием силы Лоренца приводит к появлению поперечной составляющей тока jz. В свою очередь Ez = Uz/b = UH/b, а поскольку должно выполняться условие b » a, то Ex » Ez и можно считать, что Ez ^ 0.
При практической реализации метода тока Холла измеряются величины Ix, и Iz в разрыве токового электрода, а также Ux .
Продольный и поперечный токи равны сумме токов, протекающих вдоль токовых контактов через них:
Ix = Ix1 + Ix2; Iz = Iz1 — Iz2.
14. Измерение подвижности методом магнитного сопротивления.
Для определения концентрации и подвижности носителей заряда необходимо измерить проводимость образца и постоянную Холла. Измерения обычно проводят следующим образом: на верхней грани образца размещают два зонда 1 и 2 вдоль направления линий тока, а со стороны нижней грани устанавливают зонд 3, встречный одному из них. С помощью зондов 1 и 2 измеряют проводимость образца по двухзондовому методу, а зонды 1 и 3 служат для измерения холловской разности потенциалов.
Ez=Uн/b – холловское электрическое поле
j=I/S=I/bd – плотность тока
Холловская разность потенциалов:
Uн/b=Rн*I*B/bd Uн=Rн*IB/d Rн=Uн*d/IB
Метод магнитосопротивления: на исслед. образец наносятся омические контакты большой площади и через ник протекают электрический ток Ix (вдоль оси х). В поперечном магнитном поле (вдоль оси z) в образце возникает холловский ток Iy. В данном случае холловский ток не компенсируется холловской разностью потенциалов, так как при геометрии образца, когда d/L<<1, токовые контакты закорачивают холловское поле.
L
+
Результирующий ток в образце будет направлен под некоторым углом к току Iх, что приведет к изменению сопротивления μ образца вдоль оси х.
μm=1/B* - магниторезистивная подвижность
где В – индукция магнитного поля; R(B) - изменение сопротивление образца, вызванное магнитным полем с индукцией В; R(0) – сопротивление образца.
Для того чтобы метод геом. магнитосопротивления обеспечивал высокую точность измерений, сопротивление контактов должно быть минимальным и пренибрежимо малы по сравнению с сопротивлением исследуемого образца.