
- •3. Виды электрической проводимости и их характеристики.
- •4. Основные методы измерения удельного сопротивления. Условия приприменимое методом Ван-дер-Пау.
- •5. Основные методы измерения удельного сопротивления. Измерение удельного сопротивления двухзондовым методом.
- •6. Основные методы измерения удельного сопротивления. Метод измерения удельного сопротивления.
- •7. Основные методы измерения удельного сопротивления. Условия применения четырехзондовым методом.
- •8. Бесконтактный метод удельного сопротивления.
- •9. Измерение подвижности и концентрации подвижности носителей заряда.
- •10. Эффект Холла.
- •11. Измерение эдс Холла. Эффекты, вызывающие погрешность.
- •12. Измерение эдс Холла метода Ван-дерПа.
- •13. Измерение тока Холла
- •14. Измерение подвижности методом магнитного сопротивления.
- •15. Виды диэлектриков и диэлектрическая проницаемость различных веществ.
- •16. Измерение диэлектрической проницаемости методом баллистического гальванометра.
- •17. Измерение диэлектрической проницаемости мостовым методом.
- •18. Измерение диэлектрической проницаемости жидкостным методом.
- •19. Измерение диэлектрической проницаемости жидкости абсолютным методом.
- •20. Измерение диэлектрической проницаемости порошков.
- •21. Измерение диэлектрической проницаемости порошков прямого измерения.
- •22. Измерение диэлектрической проницаемости в твердых материалах.
- •23. Термоэлектрические эффекты.
- •24. Эффект Зеебека и его практическое применение.
- •25. Эффект Пельтье и его практическое применение.
- •26. Определение коэффициента теплопроводности абсолютным методом.
- •27. Определение коэффициента теплопроводности относительным методом.
- •28. Схемы при интегральной и дифференциальной термо эдс.
- •29. Устройство и принцип работы жиромеров.
- •30. Электрохимические преобразователи и их виды.
- •32. Радиоактивные преобразовательные с термоэлектронной эмиссией и параллельно ионизационный преобразователь.
- •33. Химические сенсоры, область применения, принцип работы.
- •34. Сенсоры на основе твердых электролитов. Область применения, принцип работы.
- •35. Тепловые сенсоры. Область применения, принцип работы.
- •36. Массочувствительные сенсоры. Область применения.
- •37. Устройство, принцип действия асцилографов.
- •39. Цифровые измерительные приборы. Основные принципы построения, структурная схема.
- •40. Устройство и принцип работы электродинамических измерительных механизмов.
- •41. Устройство и принцип действия магнитно-электрических измерительных механизмов.
- •42. Устройство и принцип действия электромагнитных измерительных механизмов.
- •43. Устройство и принцип действия электростатического измерительного механизма.
- •44. Принцип действия индукционного вибрационного, биметаллического и теплового измерительных приборов.
- •45. Измерение температуры терморезисторами и термопарами.
- •46. Измерение электропроводности растворов электролитов. Понятие удельная, эквивалентная электропроводность. Закон Кольрауша. Факторы влияющие на точность измерения электропроводности растворов.
10. Эффект Холла.
Через образец, имеющий форму параллелепипеда, пропускают ток вдоль направления оси x. Если вдоль оси y (перпендикулярной оси х) приложить магнитное поле В, то движущиеся вдоль оси х со скоростью ux носители заряда (например, электроны) будут
отклоняться под действием силы Лоренца F в направлении z,перпендикулярном х и у
Fm
= q
• Ux
• B
Рисунок 4.1—
Эффект Холла в прямоугольном образце
Таким образом, э.д.с. Холла зависит от величины проходящего тока, напряженности магнитного поля, толщины пластины и концентрации носителей заряда.
Зависимость от концентрации говорит о том, что в металлах э.д.с. Холла по сравнению с полупроводниками намного меньше. Вот почему практическое использование эффекта Холла началось только с применением полупроводников.
Постоянная Холла для полупроводников с носителями заряда обоих знаков: Rh
(А/e)-[([ p2p - [ n2n )/([ pp + [ n n )2].
Величина А ~1,93±0,99 — постоянная, зависящая от механизма рассеяния носителей заряда.
Метод тока Холла позволяет проводить измерения на более высокоомных материалах, чем метод ЭДС Холла. Этому способствует такое соотношение геометрических размеров образца, при котором его сопротивление между токовыми контактами ниже, чем при измерении ЭДС Холла. Небольшое различие в характеристиках половинок контактов практически не влияет на результаты измерений, тогда как небольшая асимметрия в расположении холловских контактов при измерении ЭДС приводит к образованию значительной неэквипотенциальности, которая затрудняет измерения.
Измерение
эффекта Холла классическим методом
требует изготовления образцов правильной
геометрической формы, что усложняет
процедуру измерений. Для контроля
образцов произвольной формы и для
пленочных образцов наиболее удобным
является метод Ван-дер-Пау, для реализации
которого требуются однородные по толщине
образцы, имеющие четыре точечных
контакта, расположенных по периметру
образца на его боковой поверхности
(рис. 4.7).
Рисунок 4.7—Измерение ЭДС Холла методом Ван-дер-Пау
Эффект Холла находит широкое практическое применение. На его основе созданы полупроводниковые датчики Холла, с помощью которых можно измерять напряженность магнитного поля, величину тока и электрической мощности. С помощью эффекта Холла можно генерировать, модулировать и демодулировать электрические колебания, усиливать электрические сигналы.
11. Измерение эдс Холла. Эффекты, вызывающие погрешность.
Так как плотность тока J = I/S = qn^ ux, то ux = I/frdqn и величина э.д.с. Холла равна
Uz = Uh = Ux-b-B = Ib B/qndb = IB/q n d = Rh (IB/d), (4.1)
где d — ширина образца, а RH =1/qn— постоянная Холла.
Таким образом, э.д.с. Холла зависит от величины проходящего тока, напряженности магнитного поля, толщины пластины и концентрации носителей заряда.
Зависимость от концентрации говорит о том, что в металлах э.д.с. Холла по сравнению с полупроводниками намного меньше. Вот почему практическое использование эффекта Холла началось только с применением полупроводников.
Рисунок 4.2—Измерение э.д.с. Холла
Если носителями заряда являются дырки, то заряды на сторонах пластины поменяются местами и э.д.с. Холла изменит знак. Эффект Холла поэтому используют для определения типа электропроводности полупроводника. Условно принято считать, что знак э.д.с. Холла относится к постоянной Холла R н.
У электронных полупроводников постоянная Холла отрицательна: R Hn = -He- n.
У дырочных полупроводников положительна: R Hp = 1/p• е.
В частично компенсированных и собственных полупроводниках в электропроводности принимают участие и электроны, и дырки. Магнитное поле отклоняет их к одной стороне пластины. Э.д.с. Холла в этом случае возникает только при условии, если электроны и дырки имеют разные подвижности. Величина э.д.с. Холла для собственных полупроводников и полупроводников, электропроводность в которых осуществляется электронами и дырками, значительно меньше, чем для полупроводников с одним видом носителей заряда.
Постоянная Холла для полупроводников с носителями заряда обоих знаков: Rh = (А/e)-[([ p2p - [ n2n )/([ pp + [ n n )2].
Для собственных полупроводников, у которых n = p = П;,
Rh = (A/e-n p - [ n)/([ p + [ n).
Величина А ~1,93±0,99 — постоянная, зависящая от механизма рассеяния носителей
заряда.
Метод тока Холла позволяет проводить измерения на более высокоомных материалах, чем метод ЭДС Холла. Этому способствует такое соотношение геометрических размеров образца, при котором его сопротивление между токовыми контактами ниже, чем при измерении ЭДС Холла. Небольшое различие в характеристиках половинок контактов практически не влияет на результаты измерений, тогда как небольшая асимметрия в расположении холловских контактов при измерении ЭДС приводит к образованию значительной неэквипотенциальности, которая затрудняет измерения.