
- •3. Виды электрической проводимости и их характеристики.
- •4. Основные методы измерения удельного сопротивления. Условия приприменимое методом Ван-дер-Пау.
- •5. Основные методы измерения удельного сопротивления. Измерение удельного сопротивления двухзондовым методом.
- •6. Основные методы измерения удельного сопротивления. Метод измерения удельного сопротивления.
- •7. Основные методы измерения удельного сопротивления. Условия применения четырехзондовым методом.
- •8. Бесконтактный метод удельного сопротивления.
- •9. Измерение подвижности и концентрации подвижности носителей заряда.
- •10. Эффект Холла.
- •11. Измерение эдс Холла. Эффекты, вызывающие погрешность.
- •12. Измерение эдс Холла метода Ван-дерПа.
- •13. Измерение тока Холла
- •14. Измерение подвижности методом магнитного сопротивления.
- •15. Виды диэлектриков и диэлектрическая проницаемость различных веществ.
- •16. Измерение диэлектрической проницаемости методом баллистического гальванометра.
- •17. Измерение диэлектрической проницаемости мостовым методом.
- •18. Измерение диэлектрической проницаемости жидкостным методом.
- •19. Измерение диэлектрической проницаемости жидкости абсолютным методом.
- •20. Измерение диэлектрической проницаемости порошков.
- •21. Измерение диэлектрической проницаемости порошков прямого измерения.
- •22. Измерение диэлектрической проницаемости в твердых материалах.
- •23. Термоэлектрические эффекты.
- •24. Эффект Зеебека и его практическое применение.
- •25. Эффект Пельтье и его практическое применение.
- •26. Определение коэффициента теплопроводности абсолютным методом.
- •27. Определение коэффициента теплопроводности относительным методом.
- •28. Схемы при интегральной и дифференциальной термо эдс.
- •29. Устройство и принцип работы жиромеров.
- •30. Электрохимические преобразователи и их виды.
- •32. Радиоактивные преобразовательные с термоэлектронной эмиссией и параллельно ионизационный преобразователь.
- •33. Химические сенсоры, область применения, принцип работы.
- •34. Сенсоры на основе твердых электролитов. Область применения, принцип работы.
- •35. Тепловые сенсоры. Область применения, принцип работы.
- •36. Массочувствительные сенсоры. Область применения.
- •37. Устройство, принцип действия асцилографов.
- •39. Цифровые измерительные приборы. Основные принципы построения, структурная схема.
- •40. Устройство и принцип работы электродинамических измерительных механизмов.
- •41. Устройство и принцип действия магнитно-электрических измерительных механизмов.
- •42. Устройство и принцип действия электромагнитных измерительных механизмов.
- •43. Устройство и принцип действия электростатического измерительного механизма.
- •44. Принцип действия индукционного вибрационного, биметаллического и теплового измерительных приборов.
- •45. Измерение температуры терморезисторами и термопарами.
- •46. Измерение электропроводности растворов электролитов. Понятие удельная, эквивалентная электропроводность. Закон Кольрауша. Факторы влияющие на точность измерения электропроводности растворов.
34. Сенсоры на основе твердых электролитов. Область применения, принцип работы.
Сенсоры на основе твердых электролитов (ионных проводников) в основном применяются для газового анализа и предназначены для определения тех газов, чьи ионы при диссоциации обусловливают проводимость этих проводников.
Принцип работы сенсоров состоит в том, что поступающий газ диффундирует через пористый рабочий электрод к границе раздела электрод -твердый электролит, где происходит его диссоциация с образованием ионов, которые под действием электрического поля диффундируют через чувствительный элемент сенсора к другому электроду.
Широкое распространение, например, получили сенсорные датчики кислорода на основе керамики Zr02-Y203 (рис. 4.16). Со стороны катода, выполненного либо перфорированным, либо в виде растровой системы, происходит сорбция молекул кислорода, которые диссоциируют с образованием заряженных ионов. Ионы кислорода под действием электрического поля диффундируют через чувствительный элемент к катоду, где разряжаются с образованием молекулярного кислорода. Таким образом, ток в измерительной цепи пропорционален содержанию кислорода в исследуемой атмосфере. Поскольку подвижность ионов обычно достаточно низка, для ее увеличения чувствительные элементы сенсоров нагревают до относительно высоких рабочих температур (750-1100°С).
Для газового анализа применяются сенсоры на ионных проводниках различных конструкций, в том числе и работающие при комнатной температуре. Например, четырехэлектродный сенсор Н2, СО и NH3 с чувствительным элементом из протонного проводника Sb205 • 2Н20. В окрестности внешних электродов из платиновой черни, между которыми пропускают ток, расположены дополнительные электроды из серебра. Между ними измеряется падение напряжения. Газ диффундирует в твердый электролит через внешние электроды, и падение напряжения между внутренними электродами такого сенсора линейно зависит от концентрации газа.
В настоящее время с использованием возможностей микроэлектроники изготавливаются датчики с микронасосами, в роли которых выступают твердые электролиты. В качестве чувствительных элементов применяют: (β-PbF2 (Н2, NH3); AgCl (С12); К2С03 (С02) и др.
35. Тепловые сенсоры. Область применения, принцип работы.
Принцип действия тепловых сенсоров основан на регистрации изменения теплофизических характеристик чувствительного элемента в результате внешнего воздействия (например, хим. реакции). Среди тепловых сенсоров наибольшее распространение получили пироэлектрические и термокаталитические.
Пироэлектрические сенсоры. Пироэлектричество - явление возникновения поверхностного заряда у некоторых кристаллов при применении к ним внешнего теплового воздействия вдоль соответствующих кристаллографических направлений. Тепловое воздействие на кристалл вызывает изменение его температуры, которое приводит к перемещению ионов в решетке, в результате чего образуется поверхностный заряд - положительный на одной стороне кристалла и отрицательный на другой: Ток, возникающий в результате изменения температуры во времени, соответствует тепловому потоку. Таким образом, скорость изменения средней температуры пироэлектрической структуры определяет величину возникающего на кристалле заряда и, если пироэлектрический коэффициент мало зависит от температуры, пироэлектрический элемент можно использовать для контроля потока тепловой энергии.
Пироэлектрические сенсоры, по сути, являются микрокалориметрами. В качестве выходного сигнала в таких датчиках используют изменение напряжения или изменение тока между электродами, а в качестве пироэлектрического чувствительного элемента чаще всего применяют LiTi03, поскольку он обладает пироэлектрическим коэффициентом, достаточно постоянным в широком диапазоне температур.
Рассмотрим схему дифференциального пироэлектрического микрокалориметра, работающего в динамическом режиме (рис. 4.17). Нагревательный электрод используется для введения в систему регулируемого количества тепла, что приводит к линейному изменению температуры датчика с некоторой постоянной скоростью.
Один из электродов датчика покрывается катализатором или выполняется из каталитически активного металла (Pt, Pd, Ni) для протекания реакции окисления (или термодесорбции) детектируемых газов, в результате которой выделяется или поглощается некоторое количество тепла, что приводит к изменению выходного сигнала. Дифференциальный сигнал (рис. 4.18) (зависимость сигнала сенсора от времени при линейном нагреве) содержит всплески, каждый из которых соответствует какой-либо реакции, протекающей на катализаторе при определенной температуре.
Рис. 4.17. Схема пироэлектрического сенсора (а) и функция сигнала пироэлектрического элемента от температуры (б)
Рис. 4.18.
Термокаталитические сенсоры. Термокаталитические сенсоры работают на эффекте изменения электрофизических свойств чувствительного элемента в процессе нагрева за счет энергии, выделяющейся в результате каталитической реакции. В данном классе устройств наиболее распространенными являются пеллисторы, или моноэлектродные сенсоры (рис. 4.19), представляющие собой спираль из платиновой проволоки толщиной 5-25 мкм, покрытую слоем керамики А1203, поверх которой нанесен слой катализатора (Pd, Pt и т. д.). Принцип работы основан на тепловом эффекте каталитического окисления газа на поверхности катализатора, сопровождающемся изменением температуры сенсора и, следовательно, сопротивления платиновой спирали. Разновидностью таких сенсоров являются пеллисторы, в которых вместо изолирующего керамического покрытия используется полупроводниковое (Sn02.), шунтирующее витки спирали. В результате термоэффекта окисления при воздействии детектируемого газа уменьшается также его сопротивление, что приводит к увеличению коэффициента шунтирования витков спирали. Применяются пеллисторы, как правило, в мостовых схемах в паре с сенсором сравнения, выполненным без катализатора
В качестве чувствительных элементов могут быть использованы материалы, электрофизические характеристики которых крайне чувствительны к малейшим изменениям температуры.
Кроме того, термокаталитические сенсоры методами микротехнологий изготавливаются на базе термопарных батарей, термочувствительных диодов и т. д.