Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШПОРА ЭЛЕКТРОФИЗИЧЕСКИЕ МЕТОДЫ.doc
Скачиваний:
6
Добавлен:
01.05.2025
Размер:
1.7 Mб
Скачать

24. Эффект Зеебека и его практическое применение.

Зеебек обнаружил, что, когда два стыка замкнутой электрической цепи, составленной из двух разных проводящих материалов, поддерживаются при разной температуре, в этой цепи возникает электрический ток

Проводник В

Проводник А Амперметр

Важной характеристикой термоэлектрических свойств материалов, составляющих цепь, является напряжение на концах разомкнутой цепи (т.е. когда один из стыков электрически разъединен), так как в замкнутой цепи ток и напряжение зависят от удельного электросопротивления проводов. Это напряжение разомкнутой цепи ԐAB (T1, T2), зависящее от температур T1 и T2 спаев , называется термоэлектрической электродвижущей силой (термо-ЭДС). Знак термо-ЭДС зависит от того, для какого из проводников больше по абсолютной величине удельная термо-ЭДС.

В небольшом интервале температур величину термо-ЭДС Ԑ можно считать пропорциональной разности температур и коэффициенту Зеебека:

Ԑ = α∙(T2─ T1),где Т2 - температура «горячего» контакта; Т1 - температура «холодного» контакта; α - коэффициент удельной термо-ЭДС (коэффициент Зеебека), который зависит в первую очередь от свойств материала, а также от температуры.

25. Эффект Пельтье и его практическое применение.

Ж.Пельте заметил, что при прохождении тока через спай двух разных проводников температура спая изменяется. А Э.Х.Ленц показал, что при достаточно большой силе тока каплю воды, нанесенную на спай, можно либо заморозить, либо довести до кипения, изменяя направление тока. При одном направлении тока спай нагревается, а при противоположном – охлаждается.

Э лектротермический эффект Пельте

В этом случае при пропускании тока по цепи, составленной из проводников A и B, один спай нагревается, а другой – охлаждается. Какой именно нагревается, а какой охлаждается – это зависит от направления тока в цепи. Количество выделяющегося тепла QП, пропорциональное прошедшему через контакт току

QП= Π∙I∙t,

где t - время; I - сила тока; П - коэффициент Пельте, зависящий от природы контактирующих материалов.

Причина возникновения явления Пельте заключается в том, что средняя энергия электронов, участвующих в переносе тока, зависит от зонной структуры материала, концентрации электронов и механизма их рассеяния, и поэтому в разных проводниках различна. При переходе из одного проводника в другой электроны либо передают избыточную энергию атомам, либо пополняют недостаток энергии за их счѐт (в зависимости от направления тока). В первом случае вблизи контакта выделяется, а во втором — поглощается теплота Пельте.

26. Определение коэффициента теплопроводности абсолютным методом.

Теплопроводность часто используется для определения электрофизических параметров проводящих материалов. Теплопроводность материалов зависит от наличия в них примесей, дефектов, вида переносчиков теплоты (фононы, электроны и др.) и механизма их рассеяния. Поэтому измерение коэффициента теплопроводности позволяет не только оценивать параметры теплового режима, но и контролировать качество материала. Коэффициент теплопроводности א определяет количество теплоты, переносимой через единичное сечение при наличии нормального к сечению градиента температуры, численно равного 1 К/м. Поток теплоты Q через сечение S: Q=אS∆T/ ℓ, где ∆T – разность температур между двумя точками; ℓ – расстояние между точками.

В абсолютном методе используется непосредственно данное соотношение. При этом необходимо создать условия для задания определенного теплового потока в исследуемом материале и обеспечить достаточно точное измерение всех параметров, необходимых для вычислений. Типичная схема измерений, позволяющая выполнить эти требования на рис.

Образец 1 с нагревателем и датчиками, размещенный в вакуумируемом сосуде, зажат между металлическими блоками 2 и 3, изготовленными из материала с высокой теплопроводностью (Сu, Аg, Аl), в которые вставлены (зажаты в специальных вырезах) датчики температур 4 «холодной» и «горячей» сторон образца. В блок 3 вмонтирован электронагреватель 5, тепловая мощность которого рассчитывается по измеряемым во внешней цепи току и напряжению питания (Q=lU). Отсутствие газов в объеме обеспечивает отсутствие заметных потерь теплоты через боковые поверхности образца и блоков (не устраняемое при этом тепловое излучение остается основным источником погрешности, поэтому для его уменьшения иногда дополнительно устанавливают тепловые экраны). Для уменьшения погрешности измерения проводят на малом перепаде температур и используют образцы большого сечения и малой длины.