
- •3. Виды электрической проводимости и их характеристики.
- •4. Основные методы измерения удельного сопротивления. Условия приприменимое методом Ван-дер-Пау.
- •5. Основные методы измерения удельного сопротивления. Измерение удельного сопротивления двухзондовым методом.
- •6. Основные методы измерения удельного сопротивления. Метод измерения удельного сопротивления.
- •7. Основные методы измерения удельного сопротивления. Условия применения четырехзондовым методом.
- •8. Бесконтактный метод удельного сопротивления.
- •9. Измерение подвижности и концентрации подвижности носителей заряда.
- •10. Эффект Холла.
- •11. Измерение эдс Холла. Эффекты, вызывающие погрешность.
- •12. Измерение эдс Холла метода Ван-дерПа.
- •13. Измерение тока Холла
- •14. Измерение подвижности методом магнитного сопротивления.
- •15. Виды диэлектриков и диэлектрическая проницаемость различных веществ.
- •16. Измерение диэлектрической проницаемости методом баллистического гальванометра.
- •17. Измерение диэлектрической проницаемости мостовым методом.
- •18. Измерение диэлектрической проницаемости жидкостным методом.
- •19. Измерение диэлектрической проницаемости жидкости абсолютным методом.
- •20. Измерение диэлектрической проницаемости порошков.
- •21. Измерение диэлектрической проницаемости порошков прямого измерения.
- •22. Измерение диэлектрической проницаемости в твердых материалах.
- •23. Термоэлектрические эффекты.
- •24. Эффект Зеебека и его практическое применение.
- •25. Эффект Пельтье и его практическое применение.
- •26. Определение коэффициента теплопроводности абсолютным методом.
- •27. Определение коэффициента теплопроводности относительным методом.
- •28. Схемы при интегральной и дифференциальной термо эдс.
- •29. Устройство и принцип работы жиромеров.
- •30. Электрохимические преобразователи и их виды.
- •32. Радиоактивные преобразовательные с термоэлектронной эмиссией и параллельно ионизационный преобразователь.
- •33. Химические сенсоры, область применения, принцип работы.
- •34. Сенсоры на основе твердых электролитов. Область применения, принцип работы.
- •35. Тепловые сенсоры. Область применения, принцип работы.
- •36. Массочувствительные сенсоры. Область применения.
- •37. Устройство, принцип действия асцилографов.
- •39. Цифровые измерительные приборы. Основные принципы построения, структурная схема.
- •40. Устройство и принцип работы электродинамических измерительных механизмов.
- •41. Устройство и принцип действия магнитно-электрических измерительных механизмов.
- •42. Устройство и принцип действия электромагнитных измерительных механизмов.
- •43. Устройство и принцип действия электростатического измерительного механизма.
- •44. Принцип действия индукционного вибрационного, биметаллического и теплового измерительных приборов.
- •45. Измерение температуры терморезисторами и термопарами.
- •46. Измерение электропроводности растворов электролитов. Понятие удельная, эквивалентная электропроводность. Закон Кольрауша. Факторы влияющие на точность измерения электропроводности растворов.
1.Электронная теория проводимости. Основные понятия и соотношения.
Электрический ток, возникающий в твердом теле под действием электрического поля, представляет собой направленный поток частиц — носителей заряда, который накладывается на хаотическое движение, совершаемое носителями заряда в отсутствие электрического поля. Носителями заряда служат электроны, ионы, а у полупроводников — электроны и дырки. При приложении внешнего электрического поля Е электроны приобретают некоторую направленную против поля скорость. Величина этой направленной скорости — скорости дрейфа υдр — будет определять силу электрического тока. электроны под действием приложенного поля смещаются в направлении против поля. Ускорение, приобретаемое электронами на длине свободного пробега,
a = Fe/m = e∙E/m.
Средняя скорость дрейфа на длине свободного пробега
υср = 0,5 ( е∙Е/m)∙η
где m — масса носителя заряда, η — время свободного пробега
Подвижность электрона — это отношение средней установившейся скорости перемещения электрона в направлении электрического поля к напряженности этого поля.
Плотность тока в кристалле с концентрацией электронов п:
J = e∙ υср ∙n = e∙n∙μ∙E.
удельная электрическая проводимость: σ=еnμ.
Эффективная масса электрона в кристалле — это масса такого свободного электрона, который под действием внешней силы приобрел бы такое же ускорение, как и электрон в кристалле под действием такой же силы. При всех видах столкновений сохраняются энергия и импульсы электронов и фононов.
Рассеяние электронов — прямо пропорционально поперечному сечению того объема, который занят колеблющимся атомом.
Подвижность электрона в металле определяется выражением
μ=e∙l/(mυ).
2. Электронная теория проводимости. Классификация веществ по величине проводимости.
Электрический ток, возникающий в твердом теле под действием электрического поля, представляет собой направленный поток частиц — носителей заряда, который накладывается на хаотическое движение, совершаемое носителями заряда в отсутствие электрического поля. Носителями заряда служат электроны, ионы, а у полупроводников — электроны и дырки. При приложении внешнего электрического поля Е электроны приобретают некоторую направленную против поля скорость. Величина этой направленной скорости — скорости дрейфа υдр — будет определять силу электрического тока.
Различают проводники, полупроводники и диэлектрики. проводимость полупроводников увеличивается не только при нагревании (т. е. при подведении к полупроводнику тепловой энергии), но и при освещении, при облучении ядерными частицами; она меняется при наложении электрических и магнитных полей, при изменении внешнего давления и т. п. Это означает, что полупроводники ‒ это вещества, проводимость которых зависит от внешних условий: температуры, давления, внешних полей, освещения, облучения ядерными частицами Так как при T→0 и при отсутствии подвода энергии извне проводимость (невырожденных) полупроводников стремится к нулю, то мы можем сказать, что полупроводники ‒ это вещества, обладающие проводимостью только в возбужденном состоянии. Электропроводность диэлектриков мала, однако всегда отлична от нуля. Носителями тока в диэлектриках могут быть электроны и ионы. Электронная проводимость диэлектриков обусловлена теми же причинами, что и электропроводность полупроводников.
Полупроводники, образующие промежуточную группу между металлами и диэлектриками, — это вещества, электропроводность которых лежит в широком интервале (14 порядков величины) —от 10~8 до 103 См/см. Однако такая чисто количественная классификация совершенно не передает специфических особенностей электропроводности и других свойств, сильно зависящих для полупроводников от внешних условий (температуры, освещенности, давления и облучения) и внутреннего совершенства кристаллического строения (собственные дефекты решетки, примеси и т. п.).
Полупроводники в свою очередь делятся на донорные и акцепторные.
больше число свободных носителей заряда, которые могут перемещаться под Чем больше число свободных носителей заряда, которые могут перемещаться под действием электрического поля, и чем большую среднюю скорость может сообщать им электрическое поле, тем выше должна быть величина удельной электрической проводимости.
3. Виды электрической проводимости и их характеристики.
Существует два вида электрической проводимости:
- металлическая – проводников 1-го рода (медного или алюминиевого провода);
- электролитическая – проводников 2-го рода (водных растворов кислот, солей и оснований)
В первом случае электричество представляет собой направленный поток электронов. Электроны передвигаются от отрицательного полюса к положительному. Металлическая проводимость не связана с изменением химических свойств проводника. Проводимость проводников 1-го рода не изменяется в процессе пропускания ч/з них электрического тока.
Во втором случае электрические заряды переносятся ч/з раствор электролита с помощью находящихся в растворе ионов, несущих положительные и отрицательные заряды.
При действии постоянного электрического тока движение ионов становиться упорядоченным. Катионы движутся в направлении к катоду, анионы – к аноду. Перенос ионов под действием электрического тока вызывает изменение химических свойств проводников и сопровождается образованием новых веществ, т.е происходит электролиз. При электролизе на катоде наблюдается выделение Н2 или различных металлов, а на катоде О2 или других неметаллов.
4. Основные методы измерения удельного сопротивления. Условия приприменимое методом Ван-дер-Пау.
Применим для определения удельного сопротивления плоских образцов произвольной формы, тонки плёночных слоёв. Диапазон измерений 10-4 – 103 Ом*см.
Схема измерения
На периферии плоского образца толщиной d создают 4 точечных омических контакта A, B, C, D. Сначала через пару контактов А и В пропускают ток и измеряют разность потенциалов между парой CD, затем пропускают ток через BC и измеряют разность потенциалов на DA. Рассчитывают два значения сопротивления
RABCD=UCD/IAB и RBCDA=UDA/IBC
Удельное сопротивление рассчитывают по формуле
f – функция поправок, которое можно узнать в справочной литературе. Или рассчитать приблизительно:
Метод Ван-дер-Пау является одним из наиболее точных, но погрешность существенно возрастает в том случае, если контакты занимают на боковой поверхности некую протяжённую область или же частично попадают на поверхность пластины.
Для уменьшения погрешности измерений используют образцы специальной формы – клеверного креста и греческого креста.
5. Основные методы измерения удельного сопротивления. Измерение удельного сопротивления двухзондовым методом.
Используется для измерения удельного сопротивления образцов правильной геометрической формы с известным поперечным сечением. Рабочий диапазон измеряемых значений удельного сопротивления 10-3— 104 Ом · см, но может применяться и для измерения удельных сопротивлений менее 10-3 Ом · см.
Схема
На торцевых гранях образца изготавливаются омические контакты. Через них пропускают ток вдоль образца. Вдоль линии тока на одной из поверхностей устанавливаются 2 контакта в виде металлических иголок-зондов, имеющие малую площадь соприкосновения с образцом. Между ними измеряется разность потенциалов U12. При условии однородности образца удельное сопротивление ρ будет равно
Где А=сb –площадь поперечного сечения; I-сила тока, протекающего через образец; s- расстояние между зондами; U12 – напряжение между зондами.
Необходимое условие применения метода – одномерность пространственного распределения эквипотенциальных линий тока. Чтобы максимально ограничить эффект растекания тока, торцевые грани образца покрываются контактами равномерно по всей площади. Существенное влияние в результат измерения вносит омичность контактов (контакты не должны обладать выпрямляющим эффектом) Критерий омичности – ход вольтамперной характеристики через контакт.