
- •2) Естественный способ описания движения материальной точки. Нормальное и тангенциальное ускорение. Радиус кривизны траектории.
- •3) Движение материальной точки по окружности. Угловое перемещение. Угловая скорость. Угловое ускорение. Связь между линейными угловыми величинами.
- •5) Динамика поступательного движения твердого тела. Инерциальные системы отсчета. Сила. Законы Ньютона и их современная трактовка.
- •8) Консервативные и диссипативные силы. Потенциальная энергия, работа сил(6).
- •7) Работа и мощность. Кинетическая энергия, и ее связь с работой внешних и внутренних сил.
- •10) Поле сил. Характеристики поля. Градиент потенциала.
- •9) Потенциальная энергия и ее связь с силой, действующей на систему материальных точек. Эквипотенциальные поверхности.
- •11) Кинетическая энергия поступательного и вращательного движения твердого тела. Полная механическая энергия. Закон сохранения полной механической энергии.
- •12) Момент инерции твердого тела. Свойства момента инерции. Вывод момента инерции однородного сплошного цилиндра. Теорема Штейнера-Гюйгенса.
- •16) Принцип относительности Галилея.
- •24) Идеальный газ. Уравнения состояния идеального газа. Основное уравнение молекулярно-кинетической теории идеального газа.
- •Закон взаимосвязи массы и энергии
- •21) Стационарное течение идеальной жидкости по трубе. Линии тока. Трубка тока. Уравнение неразрывности. Уравнение Бернулли.
- •22) Силы вязкого трения. Формула Ньютона для вязкости. Течение вязкой жидкости по трубам. Расход жидкости. Формула Пуазейля.
- •25) Распределение Больцмана. Распределение Максвелла. Скорости теплового движения молекул.
- •27) Адиабатический процесс. Уравнение Пуассона.
- •31) Вероятность состояния. Статистический вес состояния. Второе начало термодинамики, отражающее его статистический смысл.
- •28) Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам.
- •30) Энтропия. Второе и третье начало термодинамики. Изменение энтропии в процессах идеального газа.
- •34) Потенциальный характер электростатического поля. Потенциал. Связь между напряженностью и потенциалом. Графическое представление электрического поля. Эквипотенциальные поверхности.
- •Графическое изображение электрических полей.
- •33) Поток вектора. Теорема Остроградского-Гаусса и её применении к расчету электрических полей. Поле заряженной плоскости, двух разноименно заряженных плоскостей, заряженной сферы.
- •37) Основные уравнения электростатики диэлектриков. Электрическое смещение.
- •39) Энергия системы зарядов. Энергия и плотность энергии электрического поля.
- •40) Электрический ток, его характеристики и условия существования. Электродвижущая сила, напряжение. Закон Ома в интегральной и дифференциальной формах.
- •41) Закон Джоуля-Ленца в интегральной и дифференциальной формах. Удельная мощность тока.
- •42) Классическая электронная теория электропроводимости металлов и ее экспериментальное доказательство.
- •43) Магнитное поле и его графическое представление. Вектор магнитной индукции. Закон Био-Савара-Лапласа и его применение к расчету магнитных полей (поле прямого тока, поле кругового тока).
- •Закон Био-Савара.
- •44) Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля в вакууме. Теорема о циркуляции вектора магнитной индукции, и её применении для расчета поля прямого тока, соленоида.
- •47) Гипотеза Ампера. Магнитные моменты электронов и атомов. Намагниченность. Напряженность магнитного поля.
- •48) Магнитное поле в веществе. Классификация магнетиков. Элементы теории ферромагнетизма.
- •49) Опыты Фарадея. Закон фарадея для электромагнитной индукции. Правило Ленца.
- •51) Работа по перемещению проводника и контура с током в магнитном поле.
- •52) Поведение контура с током в магнитном поле.
- •53) Энергия и плотность энергии магнитного поля.
- •55) Система уравнений Максвелла в интегральной форме. Электромагнитные волны.
- •56) Колебания. Сложение гармонических колебаний одного направления с одинаковыми частотами. Векторная диаграмма колебаний. Биения.
- •60) Вынужденные колебания в электрическом колебательном контуре (дифференциальное уравнение и его решение). Резонанс и резонансные кривые.
- •Резонанс.
- •Резонансные кривые.
5) Динамика поступательного движения твердого тела. Инерциальные системы отсчета. Сила. Законы Ньютона и их современная трактовка.
Производная но времени от количества движения К материальной точки или системы материальных точек относительно неподвижной (инерциальной) системы отсчета равна главному вектору F всех внешних сил, приложенных к системе: ma = F В случае поступательного движения твердого тела с абсолютной скоростью v скорость центра инерции vc = v. Поэтому при рассмотрении поступательного движения твердого тела это тело можно мысленно заменить материальной точкой, совпадающей с центром инерции тела, обладающей всей его массой и движущейся под действием главного вектора внешних сил, приложенных к телу. В проекциях на оси неподвижной прямоугольной декартовой системы координат уравнения основного закона динамики поступательного движения системы имеют вид: macx = Fx , macy = Fy , macz = Fz 2. Простейшие случаи поступательного движения твердого тела. а) Движение по инерции (F = 0): mv = const, a=0. б) Движение под действием постоянной силы: d/dt (mv) = F = const, mv = Ft + mv0, где mv0 - количество движения тела в начальный момент времени t = 0. в) Движение под действием переменной силы. Изменение количества движения тела за промежуток времени от t1 до t2 равно mv2 - mv1 = Fcp (t2 - t1) где Fcp - среднее значение вектора силы в интервале времени времени от t1 до t2.
Инерциальные системы отсчета – это системы, относительно которых материальная точка при отсутствии на нее внешних воздействий или их взаимной компенсации покоится или движется равномерно и прямолинейно.
Первый закон Ньютона. Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения.
Второй закон Ньютона. В инерциальной системе отсчёта ускорение, которое получает материальная точка с постоянной массой, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе. ma = F
Третий закон Ньютона. Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению: F2->1 = -F1->2
8) Консервативные и диссипативные силы. Потенциальная энергия, работа сил(6).
Кроме контактных взаимодействий, возникающих между соприкасающимися телами, наблюдаются взаимодействия между телами, удаленными друг от друга. Такие взаимодействия осуществляются посредством физических полей.
Стационарное поле, в котором работа, совершаемая над частицей силами поля, зависит лишь от начального и конечного положений частицы и не зависит от пути, по которому она двигалась, называют потенциальным. Силы, действующие в потенциальных полях, называют консервативными. Работа консервативной силы на замкнутом пути равна нулю. Примеры консервативных сил – сила тяжести, сила упругости.
Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется неконсервативной (или диссипативной). Типичные неконсервативные силы – силы трения.