- •2) Естественный способ описания движения материальной точки. Нормальное и тангенциальное ускорение. Радиус кривизны траектории.
- •3) Движение материальной точки по окружности. Угловое перемещение. Угловая скорость. Угловое ускорение. Связь между линейными угловыми величинами.
- •5) Динамика поступательного движения твердого тела. Инерциальные системы отсчета. Сила. Законы Ньютона и их современная трактовка.
- •8) Консервативные и диссипативные силы. Потенциальная энергия, работа сил(6).
- •7) Работа и мощность. Кинетическая энергия, и ее связь с работой внешних и внутренних сил.
- •10) Поле сил. Характеристики поля. Градиент потенциала.
- •9) Потенциальная энергия и ее связь с силой, действующей на систему материальных точек. Эквипотенциальные поверхности.
- •11) Кинетическая энергия поступательного и вращательного движения твердого тела. Полная механическая энергия. Закон сохранения полной механической энергии.
- •12) Момент инерции твердого тела. Свойства момента инерции. Вывод момента инерции однородного сплошного цилиндра. Теорема Штейнера-Гюйгенса.
- •16) Принцип относительности Галилея.
- •24) Идеальный газ. Уравнения состояния идеального газа. Основное уравнение молекулярно-кинетической теории идеального газа.
- •Закон взаимосвязи массы и энергии
- •21) Стационарное течение идеальной жидкости по трубе. Линии тока. Трубка тока. Уравнение неразрывности. Уравнение Бернулли.
- •22) Силы вязкого трения. Формула Ньютона для вязкости. Течение вязкой жидкости по трубам. Расход жидкости. Формула Пуазейля.
- •25) Распределение Больцмана. Распределение Максвелла. Скорости теплового движения молекул.
- •27) Адиабатический процесс. Уравнение Пуассона.
- •31) Вероятность состояния. Статистический вес состояния. Второе начало термодинамики, отражающее его статистический смысл.
- •28) Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам.
- •30) Энтропия. Второе и третье начало термодинамики. Изменение энтропии в процессах идеального газа.
- •34) Потенциальный характер электростатического поля. Потенциал. Связь между напряженностью и потенциалом. Графическое представление электрического поля. Эквипотенциальные поверхности.
- •Графическое изображение электрических полей.
- •33) Поток вектора. Теорема Остроградского-Гаусса и её применении к расчету электрических полей. Поле заряженной плоскости, двух разноименно заряженных плоскостей, заряженной сферы.
- •37) Основные уравнения электростатики диэлектриков. Электрическое смещение.
- •39) Энергия системы зарядов. Энергия и плотность энергии электрического поля.
- •40) Электрический ток, его характеристики и условия существования. Электродвижущая сила, напряжение. Закон Ома в интегральной и дифференциальной формах.
- •41) Закон Джоуля-Ленца в интегральной и дифференциальной формах. Удельная мощность тока.
- •42) Классическая электронная теория электропроводимости металлов и ее экспериментальное доказательство.
- •43) Магнитное поле и его графическое представление. Вектор магнитной индукции. Закон Био-Савара-Лапласа и его применение к расчету магнитных полей (поле прямого тока, поле кругового тока).
- •Закон Био-Савара.
- •44) Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля в вакууме. Теорема о циркуляции вектора магнитной индукции, и её применении для расчета поля прямого тока, соленоида.
- •47) Гипотеза Ампера. Магнитные моменты электронов и атомов. Намагниченность. Напряженность магнитного поля.
- •48) Магнитное поле в веществе. Классификация магнетиков. Элементы теории ферромагнетизма.
- •49) Опыты Фарадея. Закон фарадея для электромагнитной индукции. Правило Ленца.
- •51) Работа по перемещению проводника и контура с током в магнитном поле.
- •52) Поведение контура с током в магнитном поле.
- •53) Энергия и плотность энергии магнитного поля.
- •55) Система уравнений Максвелла в интегральной форме. Электромагнитные волны.
- •56) Колебания. Сложение гармонических колебаний одного направления с одинаковыми частотами. Векторная диаграмма колебаний. Биения.
- •60) Вынужденные колебания в электрическом колебательном контуре (дифференциальное уравнение и его решение). Резонанс и резонансные кривые.
- •Резонанс.
- •Резонансные кривые.
51) Работа по перемещению проводника и контура с током в магнитном поле.
На
проводник с током в магнитном поле
действуют силы, которые определяются
с помощью закона Ампера. Если проводник
не закреплен (например, одна из сторон
контура сделана в виде подвижной
перемычки, рис. 1), то под действием силы
Ампера он в магнитном поле будет
перемещаться. Значит, магнитное поле
совершает работу по перемещению
проводника с током.
Для
вычисления этой работы рассмотрим
проводник длиной l с
током I (он может свободно двигаться),
который помещен в однородное внешнее
магнитное поле, которое перпендикулярно
плоскости контура. Сила, направление
которой определяется по правилу левой
руки, а значение — по закону Ампера,
рассчитывается по формуле
Под
действием данной силы проводник
передвинется параллельно самому себе
на отрезок dx из положения 1 в положение
2. Работа, которая совершается магнитным
полем, равна
так
как ldx=dS
— площадь, которую пересекает проводник
при его перемещении в магнитном поле,
BdS=dФ — поток вектора магнитной индукции,
который пронизывает эту площадь.
Значит,
(1) т.
е. работа по перемещению проводника с
током в магнитном поле равна произведению
силы тока на магнитный поток, пересеченный
движущимся проводником. Данная формула
справедлива и для произвольного
направления вектора В.
Рассчитаем
работу по перемещению замкнутого контура
с постоянным током I в магнитном поле.
Будем считать, что контур М перемещается
в плоскости чертежа и в результате
бесконечно малого перемещения перейдет
в положение М', изображенное на рис. 2
штриховой линией. Направление тока в
контуре (по часовой стрелке) и магнитного
поля (перпендикулярно плоскости чертежа
— за чертеж или от нас) дано на рисунке.
Контур М условно разобьем на два
соединенных своими концами проводника:
AВС и CDА.
Работа
dA, которая совершается силами Ампера
при иссследуемом перемещении контура
в магнитном поле, равна алгебраической
сумме работ по перемещению проводников
AВС (dA1)
и CDA (dA2),
т. е.
(2) Силы,
которые приложенны к участку CDA контура,
образуют острые углы с направлением
перемещения, поэтому совершаемая ими
работа dA2>0.
.Используя (1), находим, эта работа равна
произведению силы тока I в нашем контуре
на пересеченный проводником CDA магнитный
поток. Проводник CDA пересекает при своем
движении поток dФ0 сквозь
поверхность, выполненную в цвете, и
поток dФ2,
который пронизывает контур в его конечном
положении. Значит,
(3)
Силы,
которые действуют на участок AВС контура,
образуют тупые углы с направлением
перемещения, значит совершаемая ими
работа dA1<0.
Проводник AВС пересекает при своем
движении поток dФ0 сквозь
поверхность, выполненную в цвете, и
поток dФ1, который пронизывает контур в
начальном положении. Значит,
(4)
Подставляя
(3) и (4) в (2), найдем выражение для
элементарной работы:
где
dФ2—dФ1=dФ'
— изменение магнитного потока сквозь
площадь, которая ограничена контуром
с током. Таким образом,
(5)
Проинтегрировав
выражение (5), найдем работу, которая
совершается силами Ампера, при конечном
произвольном перемещении контура в
магнитном поле:
(6) значит,
работа по перемещению замкнутого контура
с током в магнитном поле равна произведению
силы тока в контуре на изменение
магнитного потока, сцепленного с
контуром. Выражение (6) верно для контура
любой формы в произвольном магнитном
поле.
