
- •5.03050901 “Бухгалтерський облік”
- •5.03050702 “Комерційна діяльність”
- •Пояснювальна записка
- •Тема 1. Елементи лінійної алгебри практична робота № 1 Тема. Розв’язування задач на виконання дій над матрицями. Обчислення визначників
- •Теоретичні відомості про визначники та їх властивості
- •Питання для самоперевірки знань, умінь
- •Виконаємо самостійно
- •Практична робота № 2 Тема. Розв’язування систем лінійних рівнянь основними методами: методом Гауса, за формулами Крамера
- •Питання для самоперевірки знань, умінь
- •Виконаємо самостійно
- •Практична робота № 3 Тема. Розв’язування систем лінійних рівнянь матричним методом
- •Теоретичні відомості про матричний спосіб розв’язування систем лінійних рівнянь
- •Питання для самоперевірки знань, умінь
- •Виконаємо самостійно
- •Тема 2. Аналітична геометрія практична робота № 4 Тема. Застосування рівнянь прямих до дослідження їх взаємного розташування, знаходження кута між ними
- •Теоретичні відомості про кути між прямими, взаємне розташування прямих в просторі
- •1. Кут між прямими, які лежать в одній площині і задані рівняннями:
- •2. Умова паралельності прямих.
- •Питання для самоперевірки знань, вмінь
- •Виконаємо самостійно
- •Практична робота № 5 Тема. Розв’язування задач на складання рівнянь ліній другого порядку: кола, еліпса, гіперболи, параболи
- •Питання для самоперевірки знань, умінь
- •Виконаємо самостійно
- •Тема 3. Вступ до математичного аналізу практична робота № 6 Тема. Границя функції. Обчислення границь функцій
- •Питання для самоперевірки знань, умінь
- •Виконаємо самостійно
- •Тема 5. Диференціальне числення функції однієї змінної
- •Питання для самоконтролю знань, умінь
- •Питання для самоконтролю знань, умінь
- •Виконаємо самостійно
- •Практична робота № 9 Тема. Схема дослідження і побудови графіка функції за допомогою похідної
- •Т еоретичні відомості. Загальна схема дослідження і побудови графіка функції. Алгоритм дослідження функції та побудови графіка
- •Питання для самоконтролю знань, умінь.
- •Виконаємо самостійно
- •Практична робота №10 Тема. Найбільше та найменше значення функції на відрізку. Розв’язування прикладних задач на застосування похідної. Задачі на максимум
- •Теоретичні відомості про найбільше і найменше значення функції на проміжку
- •Т еоретичні відомості про застосування похідної
- •Питання для самоконтролю знань, умінь
- •Виконаємо самостійно
- •Теоретичні відомості про правила диференціювання.
- •Частинні похідні.
- •Питання для самоконтролю знань, умінь.
- •Виконаємо самостійно
- •Практична робота №12 Тема. Знаходження екстремуму функції двох змінних. Застосування двох змінних в економічній теорії
- •Питання для самоконтролю знань, умінь.
- •Виконаємо самостійно
- •Тема 6. Інтегральне числення
- •Питання для самоконтролю знань, умінь
- •Виконаємо самостійно
- •Практична робота № 14 Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних
- •1. Визначений інтеграл та методи його обчислення
- •2. Метод підстановки у визначеному інтегралі.
- •3.Метод інтегрування частинами у визначеному інтегралі.
- •Питання для самоконтролю знань, умінь
- •Виконаємо самостійно
- •Практична робота № 15 Тема. Обчислення площ плоских фігур за допомогою визначеного інтеграла. Розв’язування прикладних задач
- •Теоретичні відомості про правила інтегрування та застосування визначеного інтегралу
- •1. Формула Ньютона – Лейбніца.
- •2. Застосування визначеного інтегралу до обчислення шляху за відомим законом зміни швидкості.
- •3. Обчислення площі плоскої фігури.
- •Питання для самоконтролю знань, умінь.
- •Виконаємо самостійно
- •Тема 7. Диференціальні рівняння практична робота № 16 Тема. Роз’язування лінійних диференціальних рівнянь з відокремлюваними змінними. Задача Коші
- •Теоретичні відомості про лінійні диференціальні рівняння з відокремлюваними змінними. Задача Коші
- •Питання для самоконтролю знань, умінь.
- •Виконаємо самостійно
- •Практична робота № 17 Тема. Розв’язування лінійних однорідних диференціальних рівнянь другого порядку зі сталими коефіцієнтами. Загальний та частинний розв’язки
- •Теоретичні відомості про диференціальні рівняння другого порядку зі сталими коефіцієнтами
- •Питання для самоконтролю знань, умінь
- •Література
- •Рецензія
Питання для самоперевірки знань, умінь
Що таке алгебраїчне доповнення елементів матриці?
Яка система лінійних рівнянь називається не виродженою?
Необхідна умова оберненості матриці.
Що таке матричний вигляд системи лінійних рівнянь ?
Розв’язування систем за допомогою оберненої матриці. Які системи можна розв’язати за допомогою оберненої матриці ?
Висновок____________________________________________________________________________________________________________________________
__________________________________________________________________
Перевірив викладач ___________ Оцінка ___________ Дата ______________
Виконаємо самостійно
В-1 В-2
Розв’язати систему лінійних рівнянь матричним методом:
В-3 В-4
Розв’язати систему лінійних рівнянь матричним методом:
В-5 В-6
Розв’язати систему лінійних рівнянь матричним методом:
В-7 В-8
Розв’язати систему лінійних рівнянь матричним методом:
В-9 В-10
Розв’язати систему лінійних рівнянь матричним методом:
Тема 2. Аналітична геометрія практична робота № 4 Тема. Застосування рівнянь прямих до дослідження їх взаємного розташування, знаходження кута між ними
Мета роботи: навчитись застосовувати рівняння прямих до дослідження їх взаємного розташування, знаходження кута між ними.
Наочне забезпечення та обладнання:
Інструкційні картки;
Індивідуальні завдання;
Роздаткові матеріали: “Основні формули аналітичної геометрії”
Обчислювальні засоби.
Теоретичні відомості про кути між прямими, взаємне розташування прямих в просторі
1. Кут між прямими, які лежать в одній площині і задані рівняннями:
знаходять за формулою:
(1)
Очевидно,
що косинус кута між прямими, які лежать
в одній площині, дорівнює абсолютній
величині косинуса кута між їх напрямними
векторами. Якщо прямі задані з кутовими
коефіцієнтами
,
то кут між цими прямими будемо знаходити
за формулою:
2. Умова паралельності прямих.
Прямі, задані рівняннями: , паралельні тоді і тільки тоді, коли їх напрямні вектори колінеарні, тобто коли є пропорційними відповідні координати напрямних векторів:
Прямі з кутовими коефіцієнтами паралельні тоді і тільки тоді, коли ці коефіцієнти рівні між собою.
Прямі,
задані рівняннями
паралельні тоді і тільки тоді, коли
.
3. Умова перпендикулярності прямих. Прямі, задані рівняннями:
,
перпендикулярні тоді і тільки тоді,
коли вони лежать в одній площині і їх
нормальні вектори перпендикулярні,
тобто коли виконується рівність
(скалярний добуток векторів дорівнює
нулю).
Якщо
прямі задані з кутовими коефіцієнтами
,
то вони перпендикулярні, якщо виконується
рівність:
.
Якщо
прямі задані рівняннями:
,
то прямі перпендикулярні, якщо виконується
рівність:
.
Задача
№1.
Знайти кут між прямими
і
:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Задача №2. Скласти рівняння прямої, яка проходить через точку C і паралельна до прямої l:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Задача №3. Скласти рівняння прямої, яка проходить через точку M і перпендикулярна до прямої l:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Задача №4. Скласти рівняння прямої, яка проходить через точку перетину прямих a і b і паралельна до c:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|