Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
А. А. Шиян - Экономическая кибернетика.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.66 Mб
Скачать

Интерпретация и обобщение модели Ферхюлста: "квота вылова" как модель оптимального управления.

Модель Ферхюлста появилась как простейшее обобщение модели Мальтуса на наличие «естественных ограничений» на рождаемость, приводящих к гибели индивидов. Этой моделью часто описывают размножение биологических объектов разного рода – от бактерий и до высших организмов – таких, как рыбы.

В связи с последним и рассмотрим на примере рыб организацию системы управления их численностью с учетом вылова. Такая задача отражает наше естественное желание использовать ресурс – в данном случае рыбу – для своих нужд. При этом, однако, мы хотим осуществить управление количеством рыб таким образом, чтобы достичь максимально возможного вылова без того, чтобы рыбы исчезли. Таким образом, мы будем рассматривать задачу об оптимальном использовании природного ресурса. При этом под термином оптимальность понимается, что 1) рыбы нужно вылавливать как можно больше, но 2) ресурс не должен истощаться.

Поскольку наше вмешательство является внешним по отношению к системе, уравнение (6.4) нужно модифицировать.

Рассмотрим две простейшие возможности для модификации.

Прежде всего – мы можем отлавливать рыбу с постоянной скоростью, обозначенной с (количество рыб, вылавливаемых в единицу времени, - например, ежегодно). В этом случае уравнение (6.4) примет вид

(6.6)

Из уравнения (6.6) следует, что при с>1/4 количество рыб может только уменьшаться, ибо при этом производная будет всегда отрицательна. Другими словами, если мы отлавливаем ежегодно (в качестве естественного промежутка времени удобно выбрать 1 год – время репродуктивного цикла рыб) более чем 25% от стационарно возможного количества рыб (то есть тех, которые были бы без вылова, - в наших обозначениях их количество равно 1), то рыбный ресурс будет истощен, то есть количество рыб устремится к нулю. При 0<c<1/4 – рыбный ресурс установится на некотором уровне, составляющем какую-то часть от максимально возможного х=1. При этом, однако максимальная квота отлова с=1/4 является неустойчивой (любое ее сколь угодно малое превышение приведет к исчезновению системы – рыб), и поэтому должна быть признана недопустимой.

Интегральные кривые уравнения (6.6) показаны на рисунке 6.2.

t

x

B

A

c<1/4

x

c=1/4

t

x

c>1/4

t

Может быть, попробуем организовать вылов рыбы по-другому? Например, будем задавать квоту вылова как величину, пропорциональную уже имеющемуся количеству рыбы? Тогда получим уравнение

(6.7)

Здесь величина рх задает скорость отлова рыбы. Из (6.7) очевидно, что имеют место неравенства 0<p<1. При этих условиях в стационарное количество рыб устанавливается на уровне х=В, где В находится как решение уравнения (1-x)x=px. Скорость вылова тогда может быть рассчитана по формуле с=рВ. Зададимся вопросом: когда эта скорость может быть максимальной? Ответ на этот вопрос легче всего найти из геометрических соображений. Точка В находится как пересечение графика квадратичной параболы (1-х)х и прямой рх. Наибольшее значение скорости вылова с=рх равно наибольшей ординате графика функции (1-х)х, а это достигается при х=1/2. При этом значение р=1/2 (необходимо, чтобы значение рх было равно 1/4 - максимальному значению функции (1-х)х, которое достигается при х=1/2. А это достигается, в свою очередь, при р=1/2.

Таким образом, для задачи (6.7) максимальная скорость отлова рыбы устанавливается на уровне с=1/4, - однако теперь, как легко видеть из (6.7), при этом устанавливается устойчивое количество рыбы.

x

B

t

Вот мы и привели пример ситуации, когда рассмотрение разных сценариев управления системой – в нашем случае это были разные сценарии отлова рыбы – позволяет достичь устойчивого перевода системы в новое состояние. Конечно, важные для практики задачи не будут, скорее всего, иметь такой простой вид – однако общая методология их решений будет такой же: сначала подбираем подходящую модель системы и формулируем для нее базовую математическую модель. А потом – исследуем разные способы управления, которые могут быть осуществлены в рамках этой модели. Часто для этого приходится явно выделять те допущения, которые были положены в основу базовой модели и исследовать, можем ли мы от них отказаться – и как при этом изменится математическая модель как системы, так и управления этой системой.