
- •Глава 1. Кибернетика как наука об управлении и информации. 14
- •Глава 2. Классификация систем и моделей. 23
- •Глава 3. Информация и управление. 33
- •Глава 4. Кибернетические модели и их математическое описание. 43
- •Глава 5. Пример проведения исследования социально-экономических систем. 52
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи". 69
- •Глава 7. Управление в иерархических системах. 84
- •Глава 8. Человек как управляющий объект в кибернетике и его моделирование. 92
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата. 97
- •Глава 10. Практическое моделирование социальных и экономических систем. 113
- •Глава 1. Кибернетика как наука об управлении и информации.
- •Глава 2. Классификация систем и моделей.
- •Глава 3. Информация и управление.
- •Глава 4. Кибернетические модели и их математическое описание.
- •Глава 5. Пример проведения исследования социально-экономических систем.
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи".
- •Глава 7. Управление в иерархических системах.
- •Глава 8. Человек как управляющий объект и его моделирование.
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата.
- •Глава 10. Практическое моделирование социальных и экономических систем.
- •Предисловие.
- •Введение
- •Глава 1. Кибернетика как наука об управлении и информации.
- •Управление зенитным огнем как первая задача кибернетики.
- •Норберт Винер и термин "кибернетика", и почему это слово не появилось у нас.
- •Определение понятий "кибернетика" и "управление".
- •Понятие системы, сложной системы.
- •Метод кибернетики - моделирование.
- •Методы исследований в кибернетике - анализ и синтез.
- •Способ исследования в кибернетике.
- •"Рабочее" определение термина "информация".
- •Способ решения задач в кибернетике - общее описание научного метода.
- •Специфическая роль кибернетики в системе экономических наук.
- •Вопросы и задания.
- •Глава 2. Классификация систем и моделей.
- •Определение понятия "система".
- •Классификация систем.
- •Исследование систем - системный анализ.
- •Этапы проведения системного анализа.
- •Системный анализ в социальной и экономической аналитике.
- •Классификация моделей по глубине описания.
- •Иерархические системы, иерархия моделей.
- •Вопросы.
- •Задачи.
- •Глава 3. Информация и управление.
- •"Наивная" точка зрения на управление и информацию.
- •Информация и энтропия.
- •Информация в социальных и экономических системах - современный взгляд на информацию.
- •Человек как единственный источник социальной и экономической информации.
- •"Рабочее" определение терминов "управление" и "информация".
- •Вопросы.
- •Задачи.
- •Глава 4. Кибернетические модели и их математическое описание.
- •"Черный ящик".
- •Оператор как модель для описания концепции "вход-выход".
- •Линейный оператор.
- •Процессы "без памяти" - марковские процессы.
- •Уравнение Колмогорова (Фоккера-Планка) и его статистическая интерпретация.
- •Вопросы.
- •Задачи.
- •Глава 5. Пример проведения исследования социально-экономических систем.
- •Введение и постановка задачи
- •Общее обсуждение
- •Общая постановка задачи оптимального управления.
- •Способ распознавания иерархического строения системы сэс.
- •Вопросы.
- •Задачи.
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи".
- •Принципы кибернетического управления: положительная и отрицательная обратная связь ("кнут и пряник").
- •Линейный случай - модель Мальтуса.
- •Нелинейная обратная связь - модель Ферхюлста.
- •Интерпретация и обобщение модели Ферхюлста: "квота вылова" как модель оптимального управления.
- •Двухкомпонентная модель социально-экономической системы с обратной связью (обобщение модели Лоттка-Вольтерра): математическое исследование, экономическая и социальная интерпретации.
- •Классификация состояний системы.
- •Социально - экономическая интерпретация.
- •Следствия для посткоммунистических стран (Украина, Россия).
- •Некоторые итоги.
- •Область применения изложенной базовой модели.
- •Вопросы.
- •Задачи.
- •Глава 7. Управление в иерархических системах.
- •Иерархические системы - описание и примеры применительно к экономике и обществу.
- •Упорядоченные образования (объекты) как состояние на фоне потоков энергии и/или вещества
- •Иерархия.
- •Активная и полупроницаемая мембрана.
- •Самоорганизация: понятие, описания, примеры.
- •Логические уровни понятий и терминов.
- •Термины остенсивные и вербальные.
- •Термины житейские и научные.
- •Вопросы и задания.
- •Глава 8. Человек как управляющий объект в кибернетике и его моделирование.
- •Человек как главное действующее лицо в кибернетике.
- •Место человека в технической кибернетике.
- •Человек – главный объект для моделирования в экономический кибернетике.
- •User modelling как направление для описания человека в социальных и экономических системах.
- •Главная проблема: адекватное для данного интерьера задание «модели человека».
- •Определение понятия "интерьер" (контекст).
- •Вопросы и задания.
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата.
- •Человек как объект и как субъект управления.
- •Описание интерьера, в котором происходит управление - иерархические системы.
- •Связь управления с европейским способом социального кодирования индивида.
- •Разбиение информации о событии на компоненты.
- •Определение термина "управление" через компоненты информации.
- •Двухкомпонентные аиа: определение.
- •2Аиа как оператор в пространстве компонент информации.
- •16 Типов 2аиа - минимальный набор, который способен осуществить оптимальное управление.
- •Человек как 2аиа.
- •Вопросы и задачи.
- •Глава 10. Практическое моделирование социальных и экономических систем.
- •Совместное управление в системе, состоящей из 2аиа.
- •Введение понятия "пирамида управления" и ее математическое описание.
- •Реальные социальные и экономические как примеры пирамид управления.
- •Вопросы и задания.
- •Список литературы.
- •Глава 1.
- •Глава 2.
- •Глава 3.
- •Глава 4.
- •Глава 5.
- •Глава 6.
- •Глава 7.
- •Глава 8.
- •Глава 9.
- •Глава 10.
Нелинейная обратная связь - модель Ферхюлста.
Выше был описан случай, когда система отклонялась от своего первоначального положения и стремительно удалялась от него, в рамках этой модели, сколь угодно далеко. Однако мы ожидаем – во всяком случае, модели систем строятся как раз из расчета на это – что, рано или поздно, наша система перейдет в новое состояние. Иными словами, теперь перед нами стоит задача о математическом описании перехода системы из одного состояния в другое.
Для построения такой модели зададимся вопросом: а почему вообще возможно «торможение» изменения характеристики системы? Например, это можно сделать следующим образом: как только значение характеристики системы х начнет приближаться к нужному нам новому значению х2, значение управляющего параметра k должно уменьшаться и достигать нулевого значения при х= х2.
Другими словами, для описания управления перевода системы в новое состояние, мы должны рассмотреть случай, когда имеется зависимости управляющего параметра от текущих характеристик системы. Как правило, мы получаем при этом нелинейные дифференциальные уравнения.
Например, для уравнения (6.1) его модификация выглядит так:
(6.3)
Простейший случай – это когда k(x)=1-x, и мы получаем уравнение, называемое уравнением Ферхюлста или логистическим уравнением (к такому виду можно привести при помощи преобразования координат любую линейную зависимости управляющего параметра от характеристики системы)
(6.4)
Нетрудно видеть, что это уравнение описывает переход системы из «неустойчивого» состояния х=0 в устойчивое состояние х=1 – рассматриваются только положительные значения х.
В самом общем случае, отклонения от равновесного – то есть от устойчивого состояния – описываются чаще всего в рамках линейного подхода. Если даже и рассматриваются нелинейные добавки, то они полагаются, в определенном смысле, «малыми» по сравнению с линейными членами. Поэтому можно сделать вывод: для управления посредством отрицательной обратной связи достаточно, как правило, линейного описания. Поскольку линейные методы в математике хорошо развиты, поэтому и неудивительно, что основные успехи в кибернетике (особенно – в кибернетике технической) достигнуты именно в области управления системами с целью сохранения их текущего состояния. Вместе с тем в области кибернетики экономической огромное множество задач носит совершенно противоположный характер: необходимо управлять процессом перевода исследуемой системы в то состояние, которое нам нужно. Следовательно, основным объектом изучения в экономической кибернетике являются нелинейные математические модели. Математический аппарат для их исследования весьма сложен, по этой причине и результатов достигнуто не так много. Впрочем, в рамках технической кибернетики для нелинейных задач результатов также достигнуто весьма мало.
Решение уравнения Ферхюлста (6.4) можно записать в виде
(6.5)
Здесь через х0 обозначено значение характеристики системы в начальный момент времени, при t=0.
Соответствующие решения – называемые интегральными кривыми этого уравнения – изображены на Рис.6.1
x
1
t
Возникает вопрос: а можем ли мы говорить в этом случае о наличии обратной связи вообще? Может быть, было бы более корректно говорить о модели системы? Многое зависит от того, какую задачу мы решаем, то есть от цели нашего исследования. Как правило, вопрос о построении модели системы – это не более чем этап в подготовке и выборе системы управления данным социальным или экономическим объектом. Эта мысль станет боле понятной в том случае, когда уравнение Ферхюлста запишется в размерной форме, - то есть так, как оно обычно и получается при моделировании: dx/dt=ax-bx2=ax(1-bx/a). В такой форме записи явно введены управляющие параметры a и b, посредством изменения которых мы можем управлять как конечным состоянием системы, так и процессом его достижения.