
- •Глава 1. Кибернетика как наука об управлении и информации. 14
- •Глава 2. Классификация систем и моделей. 23
- •Глава 3. Информация и управление. 33
- •Глава 4. Кибернетические модели и их математическое описание. 43
- •Глава 5. Пример проведения исследования социально-экономических систем. 52
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи". 69
- •Глава 7. Управление в иерархических системах. 84
- •Глава 8. Человек как управляющий объект в кибернетике и его моделирование. 92
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата. 97
- •Глава 10. Практическое моделирование социальных и экономических систем. 113
- •Глава 1. Кибернетика как наука об управлении и информации.
- •Глава 2. Классификация систем и моделей.
- •Глава 3. Информация и управление.
- •Глава 4. Кибернетические модели и их математическое описание.
- •Глава 5. Пример проведения исследования социально-экономических систем.
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи".
- •Глава 7. Управление в иерархических системах.
- •Глава 8. Человек как управляющий объект и его моделирование.
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата.
- •Глава 10. Практическое моделирование социальных и экономических систем.
- •Предисловие.
- •Введение
- •Глава 1. Кибернетика как наука об управлении и информации.
- •Управление зенитным огнем как первая задача кибернетики.
- •Норберт Винер и термин "кибернетика", и почему это слово не появилось у нас.
- •Определение понятий "кибернетика" и "управление".
- •Понятие системы, сложной системы.
- •Метод кибернетики - моделирование.
- •Методы исследований в кибернетике - анализ и синтез.
- •Способ исследования в кибернетике.
- •"Рабочее" определение термина "информация".
- •Способ решения задач в кибернетике - общее описание научного метода.
- •Специфическая роль кибернетики в системе экономических наук.
- •Вопросы и задания.
- •Глава 2. Классификация систем и моделей.
- •Определение понятия "система".
- •Классификация систем.
- •Исследование систем - системный анализ.
- •Этапы проведения системного анализа.
- •Системный анализ в социальной и экономической аналитике.
- •Классификация моделей по глубине описания.
- •Иерархические системы, иерархия моделей.
- •Вопросы.
- •Задачи.
- •Глава 3. Информация и управление.
- •"Наивная" точка зрения на управление и информацию.
- •Информация и энтропия.
- •Информация в социальных и экономических системах - современный взгляд на информацию.
- •Человек как единственный источник социальной и экономической информации.
- •"Рабочее" определение терминов "управление" и "информация".
- •Вопросы.
- •Задачи.
- •Глава 4. Кибернетические модели и их математическое описание.
- •"Черный ящик".
- •Оператор как модель для описания концепции "вход-выход".
- •Линейный оператор.
- •Процессы "без памяти" - марковские процессы.
- •Уравнение Колмогорова (Фоккера-Планка) и его статистическая интерпретация.
- •Вопросы.
- •Задачи.
- •Глава 5. Пример проведения исследования социально-экономических систем.
- •Введение и постановка задачи
- •Общее обсуждение
- •Общая постановка задачи оптимального управления.
- •Способ распознавания иерархического строения системы сэс.
- •Вопросы.
- •Задачи.
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи".
- •Принципы кибернетического управления: положительная и отрицательная обратная связь ("кнут и пряник").
- •Линейный случай - модель Мальтуса.
- •Нелинейная обратная связь - модель Ферхюлста.
- •Интерпретация и обобщение модели Ферхюлста: "квота вылова" как модель оптимального управления.
- •Двухкомпонентная модель социально-экономической системы с обратной связью (обобщение модели Лоттка-Вольтерра): математическое исследование, экономическая и социальная интерпретации.
- •Классификация состояний системы.
- •Социально - экономическая интерпретация.
- •Следствия для посткоммунистических стран (Украина, Россия).
- •Некоторые итоги.
- •Область применения изложенной базовой модели.
- •Вопросы.
- •Задачи.
- •Глава 7. Управление в иерархических системах.
- •Иерархические системы - описание и примеры применительно к экономике и обществу.
- •Упорядоченные образования (объекты) как состояние на фоне потоков энергии и/или вещества
- •Иерархия.
- •Активная и полупроницаемая мембрана.
- •Самоорганизация: понятие, описания, примеры.
- •Логические уровни понятий и терминов.
- •Термины остенсивные и вербальные.
- •Термины житейские и научные.
- •Вопросы и задания.
- •Глава 8. Человек как управляющий объект в кибернетике и его моделирование.
- •Человек как главное действующее лицо в кибернетике.
- •Место человека в технической кибернетике.
- •Человек – главный объект для моделирования в экономический кибернетике.
- •User modelling как направление для описания человека в социальных и экономических системах.
- •Главная проблема: адекватное для данного интерьера задание «модели человека».
- •Определение понятия "интерьер" (контекст).
- •Вопросы и задания.
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата.
- •Человек как объект и как субъект управления.
- •Описание интерьера, в котором происходит управление - иерархические системы.
- •Связь управления с европейским способом социального кодирования индивида.
- •Разбиение информации о событии на компоненты.
- •Определение термина "управление" через компоненты информации.
- •Двухкомпонентные аиа: определение.
- •2Аиа как оператор в пространстве компонент информации.
- •16 Типов 2аиа - минимальный набор, который способен осуществить оптимальное управление.
- •Человек как 2аиа.
- •Вопросы и задачи.
- •Глава 10. Практическое моделирование социальных и экономических систем.
- •Совместное управление в системе, состоящей из 2аиа.
- •Введение понятия "пирамида управления" и ее математическое описание.
- •Реальные социальные и экономические как примеры пирамид управления.
- •Вопросы и задания.
- •Список литературы.
- •Глава 1.
- •Глава 2.
- •Глава 3.
- •Глава 4.
- •Глава 5.
- •Глава 6.
- •Глава 7.
- •Глава 8.
- •Глава 9.
- •Глава 10.
Способ распознавания иерархического строения системы сэс.
Выше был описан математический аппарат, с помощью которого может быть количественно описано распределение по массе финансов для однородных социально - экономических объектов. При этом под массой финансов необходимо понимать все имущество данного объекта - как движимое, так и недвижимое, - выраженное в финансовом (денежном) измерении.
В этом разделе описаны элементы методики для проведения анализа экспериментальных данных, основанные на развитой выше системе моделей и математической формализме для их описания. Такие материалы позволяют экономистам успешно применять результаты и выводы, полученные специалистами в области экономической кибернетики. При этом пользователи таких результатов могут обойтись без знания как математического аппарата, так и положений, которые специалистом были положены в основу модели. Поэтому завершение каждой работы в области математического моделирования социальных и экономических систем – это формирование и описание такой процедуры использования полученных результатов, которая бы не требовала большого количество специальных знаний. Чем ниже требования к будущему пользователю, чем меньше ему требуется подготовки – тем большее распространение получат плоды вашего труда. Собственно, это все является аксиомами рынка.
Поскольку каждый уровень для социальных иерархических систем состоит из однородных объектов, то такие распределения, построенные для каждого из таких уровней, будут различаться между собой. прежде всего по 1) общей (суммарной) массе финансов, аккумулированной в объектах данного уровня иерархии, 2) средней массе финансов, приходящейся на один единичный структурный элемент данного уровня иерархии, и 3) уровнем вариабельности (изменчивости) массы финансов между отдельными объектами. Это - основные параметры, по которым может иметь место такое различие между разными уровнями.
Таким образом, построив график (гистограмму) зависимости N(m) (где N - число объектов (уже произвольного уровня иерархии - от отдельного человека и до транснациональной корпорации), а m - масса финансов, принадлежащих этим объектам), по числу мод данного графика можно найти иерархическое строение данной социальной структуры для социально - экономических иерархических систем произвольной природы - от фирм и до государства (даже - для всей Планеты в целом).
Опишем алгоритм анализа таких графиков.
(1)
Обозначения см. на Рис. 5.5.
Введенная таким образом величина Pi изменяется от Pi=0 для полного отсутствия иерархического уровня и до Pi=1 для максимально полной отделенности данного иерархического уровня от других.
Далее - из N(m) находим количество иерархических уровней, которые проявляются в функционировании данной социально - экономической структуры. Например, на Рис. 5.6 изображена трехуровневая иерархическая система.
Интересно также то обстоятельство, что данные экономической статистики позволяют определить уровень развитости также и пирамиды управления в данной стране!
Для такого анализа нужно построить график (гистограмму) N(n), где n - количество людей, работающих в данном объекте, а N - количество объектов с таким количественным составом сотрудников - безотносительно к их уровню иерархии.
Анализ этого графика следует производить совершенно аналогично описанному выше. Спектр чисел {nimax} даст тогда количественный состав пирамиды управления.
Также совершенно аналогично описанному выше находятся для каждого иерархического уровня свои тройки чисел Nimax, ni0 и n2, а также - степень Pi(n) выраженности иерархической структуры данного социального объекта (включая и государство в целом). Интересно, что мы можем решать как прямую задачу об оптимальной аппроксимации N(n) - если известен вид зависимости mns между массой финансов и количеством сотрудников (для всех уровней иерархии одновременно или же для каждого из уровней в отдельности - соответствующие sобщ или спектр значений {si} могут быть найдены из статистических данных).
Но мы можем решать и обратную задачу: сделав в (4) и (5) замену переменных mn, мы можем искать те параметры an, bn и n2, которые наиболее хорошо описывают экспериментальные кривые - а уже после этого, из сравнения найденных значений an, bn, n2 и am, bm, m 2 найти зависимость (зависимости) mns.
Отметим, что в математическом плане задача о выборе наилучшей аппроксимации заданной кривой с использованием данного класса функций достаточно хорошо разработана и имеется большое количество уже готовых алгоритмов и программ для ее реализации (см., например [12]), и поэтому конкретные методы реализации таких задач здесь мы не описываем.
В заключение этого параграфа сделаем замечание о виде представления экспериментальных (статистических) данных: свести их воедино на одном графике возможно только в дважды логарифмических координатах - то есть когда вдоль осей отложены lgN и lgm (или же lgn; - впрочем, можно использовать и натуральные логарифмы - это не принципиально)