
- •Глава 1. Кибернетика как наука об управлении и информации. 14
- •Глава 2. Классификация систем и моделей. 23
- •Глава 3. Информация и управление. 33
- •Глава 4. Кибернетические модели и их математическое описание. 43
- •Глава 5. Пример проведения исследования социально-экономических систем. 52
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи". 69
- •Глава 7. Управление в иерархических системах. 84
- •Глава 8. Человек как управляющий объект в кибернетике и его моделирование. 92
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата. 97
- •Глава 10. Практическое моделирование социальных и экономических систем. 113
- •Глава 1. Кибернетика как наука об управлении и информации.
- •Глава 2. Классификация систем и моделей.
- •Глава 3. Информация и управление.
- •Глава 4. Кибернетические модели и их математическое описание.
- •Глава 5. Пример проведения исследования социально-экономических систем.
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи".
- •Глава 7. Управление в иерархических системах.
- •Глава 8. Человек как управляющий объект и его моделирование.
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата.
- •Глава 10. Практическое моделирование социальных и экономических систем.
- •Предисловие.
- •Введение
- •Глава 1. Кибернетика как наука об управлении и информации.
- •Управление зенитным огнем как первая задача кибернетики.
- •Норберт Винер и термин "кибернетика", и почему это слово не появилось у нас.
- •Определение понятий "кибернетика" и "управление".
- •Понятие системы, сложной системы.
- •Метод кибернетики - моделирование.
- •Методы исследований в кибернетике - анализ и синтез.
- •Способ исследования в кибернетике.
- •"Рабочее" определение термина "информация".
- •Способ решения задач в кибернетике - общее описание научного метода.
- •Специфическая роль кибернетики в системе экономических наук.
- •Вопросы и задания.
- •Глава 2. Классификация систем и моделей.
- •Определение понятия "система".
- •Классификация систем.
- •Исследование систем - системный анализ.
- •Этапы проведения системного анализа.
- •Системный анализ в социальной и экономической аналитике.
- •Классификация моделей по глубине описания.
- •Иерархические системы, иерархия моделей.
- •Вопросы.
- •Задачи.
- •Глава 3. Информация и управление.
- •"Наивная" точка зрения на управление и информацию.
- •Информация и энтропия.
- •Информация в социальных и экономических системах - современный взгляд на информацию.
- •Человек как единственный источник социальной и экономической информации.
- •"Рабочее" определение терминов "управление" и "информация".
- •Вопросы.
- •Задачи.
- •Глава 4. Кибернетические модели и их математическое описание.
- •"Черный ящик".
- •Оператор как модель для описания концепции "вход-выход".
- •Линейный оператор.
- •Процессы "без памяти" - марковские процессы.
- •Уравнение Колмогорова (Фоккера-Планка) и его статистическая интерпретация.
- •Вопросы.
- •Задачи.
- •Глава 5. Пример проведения исследования социально-экономических систем.
- •Введение и постановка задачи
- •Общее обсуждение
- •Общая постановка задачи оптимального управления.
- •Способ распознавания иерархического строения системы сэс.
- •Вопросы.
- •Задачи.
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи".
- •Принципы кибернетического управления: положительная и отрицательная обратная связь ("кнут и пряник").
- •Линейный случай - модель Мальтуса.
- •Нелинейная обратная связь - модель Ферхюлста.
- •Интерпретация и обобщение модели Ферхюлста: "квота вылова" как модель оптимального управления.
- •Двухкомпонентная модель социально-экономической системы с обратной связью (обобщение модели Лоттка-Вольтерра): математическое исследование, экономическая и социальная интерпретации.
- •Классификация состояний системы.
- •Социально - экономическая интерпретация.
- •Следствия для посткоммунистических стран (Украина, Россия).
- •Некоторые итоги.
- •Область применения изложенной базовой модели.
- •Вопросы.
- •Задачи.
- •Глава 7. Управление в иерархических системах.
- •Иерархические системы - описание и примеры применительно к экономике и обществу.
- •Упорядоченные образования (объекты) как состояние на фоне потоков энергии и/или вещества
- •Иерархия.
- •Активная и полупроницаемая мембрана.
- •Самоорганизация: понятие, описания, примеры.
- •Логические уровни понятий и терминов.
- •Термины остенсивные и вербальные.
- •Термины житейские и научные.
- •Вопросы и задания.
- •Глава 8. Человек как управляющий объект в кибернетике и его моделирование.
- •Человек как главное действующее лицо в кибернетике.
- •Место человека в технической кибернетике.
- •Человек – главный объект для моделирования в экономический кибернетике.
- •User modelling как направление для описания человека в социальных и экономических системах.
- •Главная проблема: адекватное для данного интерьера задание «модели человека».
- •Определение понятия "интерьер" (контекст).
- •Вопросы и задания.
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата.
- •Человек как объект и как субъект управления.
- •Описание интерьера, в котором происходит управление - иерархические системы.
- •Связь управления с европейским способом социального кодирования индивида.
- •Разбиение информации о событии на компоненты.
- •Определение термина "управление" через компоненты информации.
- •Двухкомпонентные аиа: определение.
- •2Аиа как оператор в пространстве компонент информации.
- •16 Типов 2аиа - минимальный набор, который способен осуществить оптимальное управление.
- •Человек как 2аиа.
- •Вопросы и задачи.
- •Глава 10. Практическое моделирование социальных и экономических систем.
- •Совместное управление в системе, состоящей из 2аиа.
- •Введение понятия "пирамида управления" и ее математическое описание.
- •Реальные социальные и экономические как примеры пирамид управления.
- •Вопросы и задания.
- •Список литературы.
- •Глава 1.
- •Глава 2.
- •Глава 3.
- •Глава 4.
- •Глава 5.
- •Глава 6.
- •Глава 7.
- •Глава 8.
- •Глава 9.
- •Глава 10.
Уравнение Колмогорова (Фоккера-Планка) и его статистическая интерпретация.
Прежде чем ответить на заданный в конце предыдущего подраздела вопрос, следует получить ответ на вопрос другой: каким же образом может быть описано состояние нашей системы в произвольный момент времени?
Очевидно, что, даже если мы и имели одно состояние, уже через сравнительно непродолжительное время оно «размывается» в некое облако состояний, причем каждое состояние будет характеризоваться некоей вероятностью своего появления. Таким образом, текущее состояние исследуемой системы может быть описано только в рамках плотности вероятности P(t,x) для того, чтобы обнаружить систему в момент времени t в некоем состоянии х (мы перешли к тому, чтобы обозначать состояние маленькими буквами).
онечно, сказанное в этой главе справедливо только для а) марковского процесса, б) непрерывности пространства состояний системы, и для в) приближения «белого шума» (когда значение амплитуды шума «не имеет памяти»). Очень многие математические детали в процессе изложения в этом разделе будут упущены – поэтому настоятельно рекомендуется при проведении самостоятельного моделирования обратиться к соответствующей литературе. Впрочем, это должно стать правилом для специалиста в области экономической кибернетики: когда при переходе к математическому моделированию возникает необходимость в применении нового для себя математического аппарата – всегда необходимо тщательно ознакомиться с ним, то есть, с теми предположениями, которые заложены в его основу. Это позволит избежать многих ошибок.
Итак, нам, зная вид уравнения (4.14) для эволюции состояния системы, необходимо найти плотность эволюцию со временем плотности вероятности для системы иметь состояние х в момент времени t. В теории стохастических дифференциальных уравнений показано, что искомая плотность вероятности P(x,t) может быть найдена из такого дифференциального уравнения в частных производных
(4.16)
Мы не будем выписывать решение этого уравнения «в общем случае» – отметим, что это, как правило, представляет собой весьма и весьма непростую задачу даже для математика-профессионала. Остановимся только на одном весьма важном для моделирования систем свойстве этого уравнения.
Уравнение (4.16) называется прямым уравнением Колмогорова, или чаще – особенно в англоязычной литературе – уравнением Фоккера-Планка. Отметим, что, в общем случае, могут быть разные интерпретации уравнения (4.14) – соответственно получатся и разные уравнения Фоккера-Планка. За деталями рекомендуем обратиться к специальной литературе.
Для широкого класса уравнений вида (4.14) уравнение (4.16) допускает стационарное решение. Это означает, что для произвольного вида начальной плотности вероятности с течением времени устанавливается _стационарная плотность вероятности, или, иными словами, имеет место асимптотический закон P(x,t)Ps(x) при t. Пользуясь формулами (4.14) или (4.16) можно даже записать вид такой стационарной плотности вероятности. Она задается формулой
(4.17)
Здесь N – нормировочный множитель, который находится по формуле
(4.18)
Если вычисленное значение N конечно, то тогда стационарная плотность вероятности существует и для ее вычисления имеет место формула (4.17). Таким образом, получаем простой алгоритм действий: если имеется задача, задаваемая уравнением вида (4.14), то мы вычисляем для нее интеграл (4.18). Если он конечен – то задача допускает существование стационарной плотности вероятности, выражение для которой может быть вычислено по формуле (4.17). (Отметим, что, в общем случае, могут встречаться случаи, когда интеграл, стоящий под знаком экспоненты в (4.17), является несобственным, - тогда задача требует специального исследования.)
В настоящей главе много математики. Однако она дается на технологическом уровне – то есть как совокупность процедур, приводящих в результате к получению решения. Специалист-кибернетик чрезвычайно часто в своей практике сталкивается с ситуацией, когда для построения математической модели ему приходится обращаться к тем разделам математики, которые являются совершенно новыми для него. И тогда он раскрывает математические книги, и начинает разбираться в нужном для него математическом аппарате. При этом ему нет необходимости знакомиться с ним весьма подробно: вполне достаточно, когда он, во-первых, поймет положения, положенные в основание той или иной математической теории или концепции, во-вторых, убедится что эти положения не противоречат положениям его модели (если такое противоречие найдется – придется отказаться либо от математики, либо от модели!), и, в третьих, когда он научится использовать этот математический аппарат – то есть когда он научится решать задачи с его использованием. А для решения задач – вот для этого, чаще всего, и нужно просто лишь знать алгоритм применения тех или иных формул или понятий. Именно на этом уровне и был написан текст этой главы.