
- •Глава 1. Кибернетика как наука об управлении и информации. 14
- •Глава 2. Классификация систем и моделей. 23
- •Глава 3. Информация и управление. 33
- •Глава 4. Кибернетические модели и их математическое описание. 43
- •Глава 5. Пример проведения исследования социально-экономических систем. 52
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи". 69
- •Глава 7. Управление в иерархических системах. 84
- •Глава 8. Человек как управляющий объект в кибернетике и его моделирование. 92
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата. 97
- •Глава 10. Практическое моделирование социальных и экономических систем. 113
- •Глава 1. Кибернетика как наука об управлении и информации.
- •Глава 2. Классификация систем и моделей.
- •Глава 3. Информация и управление.
- •Глава 4. Кибернетические модели и их математическое описание.
- •Глава 5. Пример проведения исследования социально-экономических систем.
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи".
- •Глава 7. Управление в иерархических системах.
- •Глава 8. Человек как управляющий объект и его моделирование.
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата.
- •Глава 10. Практическое моделирование социальных и экономических систем.
- •Предисловие.
- •Введение
- •Глава 1. Кибернетика как наука об управлении и информации.
- •Управление зенитным огнем как первая задача кибернетики.
- •Норберт Винер и термин "кибернетика", и почему это слово не появилось у нас.
- •Определение понятий "кибернетика" и "управление".
- •Понятие системы, сложной системы.
- •Метод кибернетики - моделирование.
- •Методы исследований в кибернетике - анализ и синтез.
- •Способ исследования в кибернетике.
- •"Рабочее" определение термина "информация".
- •Способ решения задач в кибернетике - общее описание научного метода.
- •Специфическая роль кибернетики в системе экономических наук.
- •Вопросы и задания.
- •Глава 2. Классификация систем и моделей.
- •Определение понятия "система".
- •Классификация систем.
- •Исследование систем - системный анализ.
- •Этапы проведения системного анализа.
- •Системный анализ в социальной и экономической аналитике.
- •Классификация моделей по глубине описания.
- •Иерархические системы, иерархия моделей.
- •Вопросы.
- •Задачи.
- •Глава 3. Информация и управление.
- •"Наивная" точка зрения на управление и информацию.
- •Информация и энтропия.
- •Информация в социальных и экономических системах - современный взгляд на информацию.
- •Человек как единственный источник социальной и экономической информации.
- •"Рабочее" определение терминов "управление" и "информация".
- •Вопросы.
- •Задачи.
- •Глава 4. Кибернетические модели и их математическое описание.
- •"Черный ящик".
- •Оператор как модель для описания концепции "вход-выход".
- •Линейный оператор.
- •Процессы "без памяти" - марковские процессы.
- •Уравнение Колмогорова (Фоккера-Планка) и его статистическая интерпретация.
- •Вопросы.
- •Задачи.
- •Глава 5. Пример проведения исследования социально-экономических систем.
- •Введение и постановка задачи
- •Общее обсуждение
- •Общая постановка задачи оптимального управления.
- •Способ распознавания иерархического строения системы сэс.
- •Вопросы.
- •Задачи.
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи".
- •Принципы кибернетического управления: положительная и отрицательная обратная связь ("кнут и пряник").
- •Линейный случай - модель Мальтуса.
- •Нелинейная обратная связь - модель Ферхюлста.
- •Интерпретация и обобщение модели Ферхюлста: "квота вылова" как модель оптимального управления.
- •Двухкомпонентная модель социально-экономической системы с обратной связью (обобщение модели Лоттка-Вольтерра): математическое исследование, экономическая и социальная интерпретации.
- •Классификация состояний системы.
- •Социально - экономическая интерпретация.
- •Следствия для посткоммунистических стран (Украина, Россия).
- •Некоторые итоги.
- •Область применения изложенной базовой модели.
- •Вопросы.
- •Задачи.
- •Глава 7. Управление в иерархических системах.
- •Иерархические системы - описание и примеры применительно к экономике и обществу.
- •Упорядоченные образования (объекты) как состояние на фоне потоков энергии и/или вещества
- •Иерархия.
- •Активная и полупроницаемая мембрана.
- •Самоорганизация: понятие, описания, примеры.
- •Логические уровни понятий и терминов.
- •Термины остенсивные и вербальные.
- •Термины житейские и научные.
- •Вопросы и задания.
- •Глава 8. Человек как управляющий объект в кибернетике и его моделирование.
- •Человек как главное действующее лицо в кибернетике.
- •Место человека в технической кибернетике.
- •Человек – главный объект для моделирования в экономический кибернетике.
- •User modelling как направление для описания человека в социальных и экономических системах.
- •Главная проблема: адекватное для данного интерьера задание «модели человека».
- •Определение понятия "интерьер" (контекст).
- •Вопросы и задания.
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата.
- •Человек как объект и как субъект управления.
- •Описание интерьера, в котором происходит управление - иерархические системы.
- •Связь управления с европейским способом социального кодирования индивида.
- •Разбиение информации о событии на компоненты.
- •Определение термина "управление" через компоненты информации.
- •Двухкомпонентные аиа: определение.
- •2Аиа как оператор в пространстве компонент информации.
- •16 Типов 2аиа - минимальный набор, который способен осуществить оптимальное управление.
- •Человек как 2аиа.
- •Вопросы и задачи.
- •Глава 10. Практическое моделирование социальных и экономических систем.
- •Совместное управление в системе, состоящей из 2аиа.
- •Введение понятия "пирамида управления" и ее математическое описание.
- •Реальные социальные и экономические как примеры пирамид управления.
- •Вопросы и задания.
- •Список литературы.
- •Глава 1.
- •Глава 2.
- •Глава 3.
- •Глава 4.
- •Глава 5.
- •Глава 6.
- •Глава 7.
- •Глава 8.
- •Глава 9.
- •Глава 10.
Процессы "без памяти" - марковские процессы.
Рассмотрим систему. Пусть она может быть в некотором количестве разных состояний. Пусть вследствие каких-то причин – то ли внутреннего, то ли внешнего происхождения – система будет переходить из одного состояния в другое.
Такие переходы могут быть двух родов. Переходы первого рода – когда система из состояния i переходит в состояние k: ik, и притом такой переход осуществляется всегда. Таким образом, процессы в системе – для этого класса случаев – могут быть заданы как цепочка сменяющих друг друга состояний.
Но может быть и другой случай: система осуществляет переход ik в вероятностном смысле. Другими словами, конечное состояние системы уже не фиксировано (как было ранее!), и для следующего состояния системы открыты, в общем случае, все состояния (включая и вероятность – возможность – остаться в прежнем).
Для практических приложений весьма важное значение имеет случай, когда вероятности перехода системы в иное состояние зависят только от текущего ее состояния, - то есть от того состояния, в котором она находится в настоящий момент, но не от того, в каких состояниях она находилась ранее.
Именно такие случаи имеют место во многих экономических ситуациях. Нам, например, совершенно безразлично, какие достижения имела фирма ранее: нас, как инвесторов, интересует ее прогноз на будущее – а он определяется только ее настоящим положением на рынке.
Таким образом, случайные процессы могут служить достаточно мощным аппаратом для моделирования динамики, смены состояний и перспектив развития в социальных и экономических системах. Существуют разные способы рассмотрения такой случайности. Например, случайность может быть «введена» в на уровне модели исследуемой системы посредством того, что переходы между состояниями системы осуществляются в случайные моменты времени. Или же – сами переходы являются случайными, - например, существует вероятность перехода в несколько разных состояний. В общем же случае – может быть все: и случайные моменты времени, и случайные переходы между состояниями, да и сами вероятности таких переходов могут быть случайными – например, когда они происходят под воздействием случайных изменений во внешней по отношению к исследуемой системе среде. Заметим, что в последнем случае мы приходим к модели описания взаимодействия изучаемой системы со внешней средой!
Конечно, далеко не все интересные – с точки зрения специалиста в области экономической кибернетики – случаи имеют хорошо развитый математический аппарат. Однако выделяется класс случайных процессов, для которых получены весьма мощные математические результаты, что позволяет успешно применять их во многих областях (см., например, следующую главу).
Случайный процесс является марковским, когда любая дополнительная информация, кроме знания ее текущего состояния Xt, является несущественной для осуществления прогноза дальнейшей смены состояний системы.
Именно требование будущее зависит только от настоящего и приводит к тому, что часто марковские процессы называют «процессами без памяти».
Существует достаточно большое количество вариантов математического аппарата для марковских процессов. Ниже остановимся на том их варианте, который используется при моделировании социальных и экономических систем с помощью стохастических дифференциальных уравнений. Идея этого подхода к моделированию состоит в том, что взаимодействие системы с внешним окружением полагается изменяющимся случайным образом (более подробно – см. следующую главу).
В этом случае приращение состояния системы Xt задается формулой
(4.14)
Здесь полагается, что взаимодействие между исследуемой системой и внешней средой описывается при помощи случайного процесса
(4.15)
где задается неким усредненным состоянием окружающей среды, а изменяющаяся случайная добавка – «шум» – имеет нулевое среднее значение и дисперсию, равную 2.
Как видим, в (4.14) первый член является, по сути, дифференциальным уравнением, описывающим эволюцию системы. Но второй член – он описывает случайные добавки в это дифференциальное уравнение, что «портит» это уравнение самым неприятным для нас образом.
Каким же образом можно описать эволюцию такой системы во времени?