
- •Глава 1. Кибернетика как наука об управлении и информации. 14
- •Глава 2. Классификация систем и моделей. 23
- •Глава 3. Информация и управление. 33
- •Глава 4. Кибернетические модели и их математическое описание. 43
- •Глава 5. Пример проведения исследования социально-экономических систем. 52
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи". 69
- •Глава 7. Управление в иерархических системах. 84
- •Глава 8. Человек как управляющий объект в кибернетике и его моделирование. 92
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата. 97
- •Глава 10. Практическое моделирование социальных и экономических систем. 113
- •Глава 1. Кибернетика как наука об управлении и информации.
- •Глава 2. Классификация систем и моделей.
- •Глава 3. Информация и управление.
- •Глава 4. Кибернетические модели и их математическое описание.
- •Глава 5. Пример проведения исследования социально-экономических систем.
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи".
- •Глава 7. Управление в иерархических системах.
- •Глава 8. Человек как управляющий объект и его моделирование.
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата.
- •Глава 10. Практическое моделирование социальных и экономических систем.
- •Предисловие.
- •Введение
- •Глава 1. Кибернетика как наука об управлении и информации.
- •Управление зенитным огнем как первая задача кибернетики.
- •Норберт Винер и термин "кибернетика", и почему это слово не появилось у нас.
- •Определение понятий "кибернетика" и "управление".
- •Понятие системы, сложной системы.
- •Метод кибернетики - моделирование.
- •Методы исследований в кибернетике - анализ и синтез.
- •Способ исследования в кибернетике.
- •"Рабочее" определение термина "информация".
- •Способ решения задач в кибернетике - общее описание научного метода.
- •Специфическая роль кибернетики в системе экономических наук.
- •Вопросы и задания.
- •Глава 2. Классификация систем и моделей.
- •Определение понятия "система".
- •Классификация систем.
- •Исследование систем - системный анализ.
- •Этапы проведения системного анализа.
- •Системный анализ в социальной и экономической аналитике.
- •Классификация моделей по глубине описания.
- •Иерархические системы, иерархия моделей.
- •Вопросы.
- •Задачи.
- •Глава 3. Информация и управление.
- •"Наивная" точка зрения на управление и информацию.
- •Информация и энтропия.
- •Информация в социальных и экономических системах - современный взгляд на информацию.
- •Человек как единственный источник социальной и экономической информации.
- •"Рабочее" определение терминов "управление" и "информация".
- •Вопросы.
- •Задачи.
- •Глава 4. Кибернетические модели и их математическое описание.
- •"Черный ящик".
- •Оператор как модель для описания концепции "вход-выход".
- •Линейный оператор.
- •Процессы "без памяти" - марковские процессы.
- •Уравнение Колмогорова (Фоккера-Планка) и его статистическая интерпретация.
- •Вопросы.
- •Задачи.
- •Глава 5. Пример проведения исследования социально-экономических систем.
- •Введение и постановка задачи
- •Общее обсуждение
- •Общая постановка задачи оптимального управления.
- •Способ распознавания иерархического строения системы сэс.
- •Вопросы.
- •Задачи.
- •Глава 6. Математический аппарат для описания кибернетического управления: концепция "обратной связи".
- •Принципы кибернетического управления: положительная и отрицательная обратная связь ("кнут и пряник").
- •Линейный случай - модель Мальтуса.
- •Нелинейная обратная связь - модель Ферхюлста.
- •Интерпретация и обобщение модели Ферхюлста: "квота вылова" как модель оптимального управления.
- •Двухкомпонентная модель социально-экономической системы с обратной связью (обобщение модели Лоттка-Вольтерра): математическое исследование, экономическая и социальная интерпретации.
- •Классификация состояний системы.
- •Социально - экономическая интерпретация.
- •Следствия для посткоммунистических стран (Украина, Россия).
- •Некоторые итоги.
- •Область применения изложенной базовой модели.
- •Вопросы.
- •Задачи.
- •Глава 7. Управление в иерархических системах.
- •Иерархические системы - описание и примеры применительно к экономике и обществу.
- •Упорядоченные образования (объекты) как состояние на фоне потоков энергии и/или вещества
- •Иерархия.
- •Активная и полупроницаемая мембрана.
- •Самоорганизация: понятие, описания, примеры.
- •Логические уровни понятий и терминов.
- •Термины остенсивные и вербальные.
- •Термины житейские и научные.
- •Вопросы и задания.
- •Глава 8. Человек как управляющий объект в кибернетике и его моделирование.
- •Человек как главное действующее лицо в кибернетике.
- •Место человека в технической кибернетике.
- •Человек – главный объект для моделирования в экономический кибернетике.
- •User modelling как направление для описания человека в социальных и экономических системах.
- •Главная проблема: адекватное для данного интерьера задание «модели человека».
- •Определение понятия "интерьер" (контекст).
- •Вопросы и задания.
- •Глава 9. Пример моделирования управленческой деятельности человека с помощью модели информационного автомата.
- •Человек как объект и как субъект управления.
- •Описание интерьера, в котором происходит управление - иерархические системы.
- •Связь управления с европейским способом социального кодирования индивида.
- •Разбиение информации о событии на компоненты.
- •Определение термина "управление" через компоненты информации.
- •Двухкомпонентные аиа: определение.
- •2Аиа как оператор в пространстве компонент информации.
- •16 Типов 2аиа - минимальный набор, который способен осуществить оптимальное управление.
- •Человек как 2аиа.
- •Вопросы и задачи.
- •Глава 10. Практическое моделирование социальных и экономических систем.
- •Совместное управление в системе, состоящей из 2аиа.
- •Введение понятия "пирамида управления" и ее математическое описание.
- •Реальные социальные и экономические как примеры пирамид управления.
- •Вопросы и задания.
- •Список литературы.
- •Глава 1.
- •Глава 2.
- •Глава 3.
- •Глава 4.
- •Глава 5.
- •Глава 6.
- •Глава 7.
- •Глава 8.
- •Глава 9.
- •Глава 10.
"Черный ящик".
Как мы уже знаем, исследуемый объект, рассматриваемый как система, входит составной частью в целый ряд разных иерархических систем. В социальных и экономических системах – в основном объекте изучения экономической кибернетики – главным действующим лицом является человек. Поэтому, изучая конкретную социальную или экономическую задачу, мы вынуждены «обрывать» на некотором этапе иерархию систем, «идущую вниз». Сделаем ли мы это на человеке, или на некоей совокупности людей – это уже зависит от исследуемой задачи.
В качестве «наименьшего» элемента, который мы будем рассматривать как «неделимый», конечно, не обязательно выступает человек. Вполне может оказаться, что в качестве такого «неделимого» элемента мы будем рассматривать, например, отдельные фирмы (для задач оптимизации управления экономикой региона), социальные группы (для задач распределения средств госбюджета), или отрасли экономики (при рассмотрении баланса ресурсов в рамках валового внутреннего продукта).
Другими словами: на некотором этапе исследования некие составляющие нашу систему элементы полагаются нами уже не системами, а «конечными» и «неделимыми» объектами. Таким образом, иерархия систем разворачивается вверх, исходя от таких объектов, которые, тем самым, становятся объектами самого низкого уровня иерархии.
Такой объект – в силу сделанных нами предположений (то есть с нашей ситуативной точки зрения) – уже не будет иметь «внутреннего строения». Поэтому он должен рассматриваться как объект, который может быть охарактеризован - в рамках рассматриваемой нами задачи – только двумя классами характеристик. Необходимость этого возникает вследствие той причины, что такие объекты должны формировать систему – то есть они должны обладать возможностью образовывать связи друг с другом.
Но это возможно только при выполнении двух условий.
Во-первых, объект должен обладать способностью воспринимать воздействие со стороны других подобных объектов (это может быть информация, сведения, данные, сигналы и т.п.). Во-вторых, он сам должен обладать способностью «генерировать» такие воздействия, которые будут оказывать влияние на другие подобные ему объекты. Наконец, в-третьих, и воспринимаемые, и генерируемые воздействия должны принадлежать к одному и тому же классу, то есть характеризоваться «примерно одинаковыми» переменными, данными, характеристиками. (Последнее условие не всегда является обязательным: например, некоторые такие объекты могут быть «задействованы напрямую» на более высокие иерархические уровни. Однако, как правило, такое бывает чрезвычайно редко, и поэтому это третье условие часто упускают. Не будем пока что его рассматривать и мы – однако в последних главах книги будут приведены примеры, показывающие важность наличия такого условия).
Таким образом, приходим к определению
Фрагмент системы, который рассматривается как единое целое и характеризуется только своим «входом» (обладая, тем самым, способностью воспринимать воздействия от других фрагментов системы) и «выходом» (посредством которого он сам взаимодействует с другими объектами системы, в том числе и «отвечает» на из воздействия на него), называется черным ящиком.
Черный ящик – это, пожалуй, наиболее мощное абстрактное понятие, существующее в рамках кибернетики. Именно вследствие его введения появляется возможность построения замкнутых систем, моделирующих исследуемый объект или процесс. Черный ящик – это «мера нашего незнания» об исследуемой системе.
Как правило, он обозначается следующим образом в виде прямоугольника, в который входящими стрелочками обозначены входные (in) характеристики черного ящика – параметры, которые им преобразуются в выходные (out) характеристики черного ящика.
Выход
Вход
Черный ящик
Концепция "вход-выход".
Итак, чтобы задать (например, описать) черный ящик, необходимо задать соответствие «входные параметры» - «выходные параметры». При этом следует помнить, что внутреннее строение такого ящика остается для нас неизвестным: мы не знаем, как он устроен, не знаем, как он функционирует, не знаем, какие он может иметь состояния и как осуществляется переход между его состояниями (даже если они у него есть). Единственное, что можно сказать – это только построить модель описания входных характеристик такого объекта (совокупность классов переменных, на которые он «отвечает»), и соотнести ее (определенными соотношениями) с моделью выходных характеристик черного ящика (то есть с совокупностью классов переменных, в рамках которых могут быть выражены его «ответы»).
В общем случае, тем самым предполагается, что такой объект – черный ящик – интегрирован в качестве «активного элемента» в некую систему. Особенно наглядно это видно в случае графического (например, в виде блок-схемы) описания системы.
Данные (характеристики, параметры, информация и т.п.), которыми характеризуется вход, часто называются входными сигналами черного ящика. Данные (характеристики, параметры, информация и т.п.), которыми характеризуется выход, часто называются выходными сигналами черного ящика. Такая терминология пришла из технических систем, к которым и было впервые применено представление о черном ящике.