
- •Часть I. Цепи, сигналы, электроника и схемотехника
- •Часть II. Практикум на Electronics Workbench
- •Глава 1. Электрические цепи Часть I. Цепи, сигналы, электроника и схемотехника
- •1. Электрические цепи
- •1.1. Ток, напряжение, мощность и энергия
- •1.1. Ток, напряжение, мощность и энергия
- •Глава 1. Электрические цепи
- •1.2. Элементы электрических цепей и их уравнения
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи нику напряжения при малых токах близки аккумуляторы, батареи, электрическая сеть 220 в/50 Гц. Идеальный источник тока — это элемент, генерирующий задан-
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи л . Емкость измеряется в фарадах (ф). В радиоэлектронике чаще ис-
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи Из анализа этой формулы следует, что условие передачи максиму-
- •1.3. Электрическая цепь и уравнения соединений
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи Контур цепи — это замкнутый путь из ветвей. Например, в цепи
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи
- •2. Цепи при гармоническом воздействии
- •2.1. Гармоническое колебание и комплексная амплитуда
- •2.1. Гармоническое колебание и комплексная амплитуда
- •Глава 2. Цепи при гармоническом воздействии Комплексные амплитуды нескольких сигналов удобно изобразить
- •2.2. Уравнения элементов в комплексной форме
- •2.2. Уравнения элементов в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.2. Уравнения элементов в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.3. Уравнения соединений в комплексной форме
- •2.3. Уравнения соединений в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.3. Уравнения соединений в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.4, Мгновенная, активная, полная и реактивная мощности
- •2.4. Мгновенная, активная, полная и реактивная мощности
- •Глава 2. Цепи при гармоническом воздействии
- •2.4. Мгновенная, активная, полная и реактивная мощности
- •Глава 2. Цепи при гармоническом воздействии
- •Глава 3. Методы анализа сложных электрических цепей 3. Методы анализа сложных электрических цепей
- •3.1. Особенности анализа сложных цепей
- •3.2. Метод узловых напряжений
- •3.2. Метод узловых напряжений
- •Глава 3. Методы анализа сложных электрических цепей
- •3.2. Метод узловых напряжений
- •Глава 3. Методы анализа сложных электрических цепей
- •3.3. Метод контурных токов
- •3.3. Метод контурных токов
- •Глава 3. Методы анализа сложных электрических цепей Рассмотрим изменения, возникающие в уравнениях цепи, обуслов-
- •3.3. Метод контурных токов
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •Глава 4. Четырехполюсники, фильтры и длинные линии 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии Кроме ачх для описания фильтра используют фазочастотную ха-
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •Глава 4. Четырехполюсники, фильтры и длинные линии 7. Используя частотные свойства конденсатора и катушки индуктивности, объяснить работу фнч т-типа.
- •5.1. Линейные пространства и понятие спектра сигнала
- •5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.2. Спектр периодического сигнала
- •5.2. Спектр периодического сигнала
- •Глава 5. Сигналы и их спектры
- •5.2. Спектр периодического сигнала
- •Глава 5. Сигналы и их спектры
- •5.3. Спектр непериодического сигнала и преобразование
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры Например, из первой теоремы следует, что при увеличении скоро-
- •5.4. Преобразование сигналов в линейной цепи
- •5.4. Преобразование сигналов в линейной цепи
- •Глава 5. Сигналы и их спектры
- •5.4. Преобразование сигналов в линейной цепи
- •Глава 5. Сигналы и их спектры Таким образом, для линейной цепи справедливы три уравнения
- •5.5. Модулированные сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 6. Полупроводниковые приборы 6. Полупроводниковые приборы 6.1. Электронно-дырочный переход и полупроводниковые диоды к полупроводникам относят материалы, проводимость которых
- •Глава 6. Полупроводниковые приборы установившемся состоянии диффузионный ток будет равен дрейфо- вому току. Пусть к р-и-переходу подключен источник небольшого постоянно-
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы Импульсные диоды предназначены для работы с быстро изменяю-
- •6.2. Биполярные транзисторы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы 7. Перечислите все разновидности биполярных и полевых транзисторов. При- ведите их условные обозначения.
- •7.1. Три основные схемы усилителей на транзисторах
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов По режимам работы различают линейные и нелинейные усилители.
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов 1 _l
- •7.2. Резистивный и резонансный усилители
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •Глава 7. Электронные усилители и преобразователи сигналов
- •8. Нелинейные преобразования сигналов
- •8.1. Нелинейный элемент и воздействие на него одного
- •Глава 8. Нелинейные преобразования сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.4. Стационарный режим автогенератора
- •8.4. Стационарный режим автогенератора
- •Глава 8. Нелинейные преобразования сигналов Из анализа уравнения баланса фаз (3) следует, что в автогенерато-
- •8.4. Стационарный режим автогенератора
- •Глава 8. Нелинейные преобразования сигналов Для генерации последовательности прямоугольных импульсов ис-
- •Глава 8. Нелинейные преобразования сигналов 4. Рассчитайте амплитуду напряжения на выходе умножителя частоты в два раза, выполненного на аналоговом перемножителе, если коэффициент k пе-
- •Глава 9. Импульсные и цифровые устройства 9. Импульсные и цифровые устройства 9.1. Импульсные сигналы и электронный ключ в предыдущих главах рассматривались аналоговые сигналы: по-
- •9.1. Импульсные сигналы и электронный ключ
- •Глава 9. Импульсные и цифровые устройства
- •9.1. Импульсные сигналы и электронный ключ
- •Глава 9. Импульсные и цифровые устройства
- •9.2. Базовые логические элементы
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства Рассмотрим работу схемы ттл-элемента при подаче различных
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства
- •9.3. Комбинационные устройства
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства Комбинационная схема, выполняющая арифметическое сложение
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства
- •9.4. Триггеры
- •9.4. Триггеры
- •9.4. Триггеры
- •Глава 9. Импульсные и цифровые устройства
- •9.5. Счетчики и регистры
- •9.5. Счетчики и регистры
- •Глава 9. Импульсные и цифровые устройства
- •9.5. Счетчики и регистры
- •Глава 9. Импульсные и цифровые устройства
- •Глава 10. Цифровая обработка сигналов 10. Цифровая обработка сигналов 10.1. Дискретизация и квантование Цифровая обработка сигналов (цос) — это преобразование фор-
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.2. Аналого-цифровые и цифро-аналоговые
- •Глава 10. Цифровая обработка сигналов
- •Глава 10. Цифровая обработка сигналов
- •10.3. Цифровые фильтры
- •10.3. Цифровые фильтры
- •Глава 10. Цифровая обработка сигналов На рис. 2 в качестве примера приведена схема цифрового фильтра
- •10.3. Цифровые фильтры
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •Часть II. Практикум на Electronics
- •1. Уравнения элементов и уравнения соединений
- •2. Метод комплексных амплитуд
- •3. Анализ сложных цепей
- •4. Параметры и функции четырехполюсника
- •5. Частотные характеристики фильтров
- •6. Процессы в длинных линиях
- •7. Спектры периодических сигналов (ряд Фурье)
- •8. Метод ряда Фурье
- •9. Метод интеграла Фурье
- •10. Метод преобразования Лапласа
- •II. Спектры модулированных сигналов
- •12. Характеристики диодов
- •13. Параметры и характеристики транзисторов
- •14. Усилитель на биполярном транзисторе
Глава 8. Нелинейные преобразования сигналов 4. Рассчитайте амплитуду напряжения на выходе умножителя частоты в два раза, выполненного на аналоговом перемножителе, если коэффициент k пе-
ремножителя равен 0,1, а амплитуда входного сигнала равна 2 В.
5. Какие продукты нелинейного преобразования возникают при воздействии
двух гармоник на нелинейный или параметрический элемент? Укажите все
случаи, когда одна из комбинационных гармоник будет иметь нулевую час-
тоту.
6. Нарисуйте спектральную диаграмму, иллюстрирующую работу преобразо-
вателя частоты на гармониках гетеродина и преобразователя частоты вверх.
7. Используя изображенную на рис. 8.2.2 спектральную диаграмму преобразо-
вателя частоты вниз, найдите частоту паразитного сигнала, который будет
преобразовываться на ту же самую промежуточную частоту, что и полезный
сигнал.
8. Изобразите схему амплитудного модулятора на аналоговом перемножителе,
подавая на его первый вход несущую, а на второй вход гармонический мо-
дулирующий сигнал и дополнительное постоянное напряжение. Получите
формулу для выходного АМ-сигнала. В каком случае в схеме возникает пе-
ремодуляция?
9. Можно ли для детектирования АМ-сигналов использовать транзисторы?
Как нелинейный усилитель превратить в амплитудный детектор?
10. Для обнаружения в помещении радиоэлектронных устройств используется
следующий простой метод. С помощью антенны и генератора гармониче-
ского сигнала на всех проводниках, имеющихся в помещении, наводятся
гармонические напряжения. Если при этом возникают гармоники сигнала,
то это свидетельствует о наличии нелинейных элементов: диодов и транзи-
сторов и, следовательно, радиоэлектронных устройств в помещении. На ка-
ких частотах должен работать приемник, обнаруживающий радиоэлектрон-
ные устройства, если частота передатчика равна 3 МГц? Можно ли для
целей обнаружения использовать комбинационные гармоники?
11. Для самовозбуждения автогенератора наличие положительной ОС — необ-
ходимое, но не достаточное условие. При каком коэффициенте усиления
усилителя и при каком коэффициенте ПОС возникает самовозбуждение?
Каковы при этом должны быть фазовые сдвиги, вносимые усилителем и це-
пью ОС?
12. Зачем в автогенераторах после самовозбуждения используется отрицатель-
ная нелинейная ОС или нелинейный режим работы? При каком коэффици-
енте усиления усилителя в автогенераторе устанавливается стационарный
режим работы? Чем условия стационарности отличаются от условий
самовозбуждения?
13. Рассчитайте частоту колебаний автогенератора с линией задержки в цепи
ПОС. ФЧХ линии задержки равна ф(ш) = -ш, где время задержки
т = 10 икс. Усилитель автогенератора вносит фазовый сдвиг равный 180°.

Контрольные
вопросы и задачи
Баланс
амплитуд выполняется только для самой
низкой частоты колебаний:
на
высоких частотах коэффициент усиления
усилителя быстро уменьшается.
14.
Наличие в помещении автогенератора
(например, в составе радиоприемни-
ка,
телевизора, компьютера и т. п.) может
привести к появлению канала
утечки информации. На колебания автогенератора могут влиять небольшие
механические вибрации, создаваемые колебаниями воздуха, речью. Эти
вибрации, изменяя паразитные емкости, модулируют колебания автогенера-
тора по частоте и фазе — автогенератор с излучающими соединительными
проводами превращается в радиопередатчик. Рассчитайте уровень радиопо-
мехи, которую должен создать высокочастотный генератор шума в помеще-
нии при следующих исходных данных. Уровень помехи должен в два раза
превышать ожидаемый уровень боковых составляющих в спектре ЧМ-
сигпала. Нежелательная ЧМ с максимальной девиацией 10 Гц создается
наиболее интенсивной составляющей в спектре речевого сигнала, частота
которой равна 1 кГц. Центральная частота автогенератора создает на входе
измерительного радиоприемника сигнал с уровнем 100 мкВ.
