
- •Часть I. Цепи, сигналы, электроника и схемотехника
- •Часть II. Практикум на Electronics Workbench
- •Глава 1. Электрические цепи Часть I. Цепи, сигналы, электроника и схемотехника
- •1. Электрические цепи
- •1.1. Ток, напряжение, мощность и энергия
- •1.1. Ток, напряжение, мощность и энергия
- •Глава 1. Электрические цепи
- •1.2. Элементы электрических цепей и их уравнения
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи нику напряжения при малых токах близки аккумуляторы, батареи, электрическая сеть 220 в/50 Гц. Идеальный источник тока — это элемент, генерирующий задан-
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи л . Емкость измеряется в фарадах (ф). В радиоэлектронике чаще ис-
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи Из анализа этой формулы следует, что условие передачи максиму-
- •1.3. Электрическая цепь и уравнения соединений
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи Контур цепи — это замкнутый путь из ветвей. Например, в цепи
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи
- •2. Цепи при гармоническом воздействии
- •2.1. Гармоническое колебание и комплексная амплитуда
- •2.1. Гармоническое колебание и комплексная амплитуда
- •Глава 2. Цепи при гармоническом воздействии Комплексные амплитуды нескольких сигналов удобно изобразить
- •2.2. Уравнения элементов в комплексной форме
- •2.2. Уравнения элементов в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.2. Уравнения элементов в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.3. Уравнения соединений в комплексной форме
- •2.3. Уравнения соединений в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.3. Уравнения соединений в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.4, Мгновенная, активная, полная и реактивная мощности
- •2.4. Мгновенная, активная, полная и реактивная мощности
- •Глава 2. Цепи при гармоническом воздействии
- •2.4. Мгновенная, активная, полная и реактивная мощности
- •Глава 2. Цепи при гармоническом воздействии
- •Глава 3. Методы анализа сложных электрических цепей 3. Методы анализа сложных электрических цепей
- •3.1. Особенности анализа сложных цепей
- •3.2. Метод узловых напряжений
- •3.2. Метод узловых напряжений
- •Глава 3. Методы анализа сложных электрических цепей
- •3.2. Метод узловых напряжений
- •Глава 3. Методы анализа сложных электрических цепей
- •3.3. Метод контурных токов
- •3.3. Метод контурных токов
- •Глава 3. Методы анализа сложных электрических цепей Рассмотрим изменения, возникающие в уравнениях цепи, обуслов-
- •3.3. Метод контурных токов
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •Глава 4. Четырехполюсники, фильтры и длинные линии 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии Кроме ачх для описания фильтра используют фазочастотную ха-
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •Глава 4. Четырехполюсники, фильтры и длинные линии 7. Используя частотные свойства конденсатора и катушки индуктивности, объяснить работу фнч т-типа.
- •5.1. Линейные пространства и понятие спектра сигнала
- •5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.2. Спектр периодического сигнала
- •5.2. Спектр периодического сигнала
- •Глава 5. Сигналы и их спектры
- •5.2. Спектр периодического сигнала
- •Глава 5. Сигналы и их спектры
- •5.3. Спектр непериодического сигнала и преобразование
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры Например, из первой теоремы следует, что при увеличении скоро-
- •5.4. Преобразование сигналов в линейной цепи
- •5.4. Преобразование сигналов в линейной цепи
- •Глава 5. Сигналы и их спектры
- •5.4. Преобразование сигналов в линейной цепи
- •Глава 5. Сигналы и их спектры Таким образом, для линейной цепи справедливы три уравнения
- •5.5. Модулированные сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 6. Полупроводниковые приборы 6. Полупроводниковые приборы 6.1. Электронно-дырочный переход и полупроводниковые диоды к полупроводникам относят материалы, проводимость которых
- •Глава 6. Полупроводниковые приборы установившемся состоянии диффузионный ток будет равен дрейфо- вому току. Пусть к р-и-переходу подключен источник небольшого постоянно-
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы Импульсные диоды предназначены для работы с быстро изменяю-
- •6.2. Биполярные транзисторы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы 7. Перечислите все разновидности биполярных и полевых транзисторов. При- ведите их условные обозначения.
- •7.1. Три основные схемы усилителей на транзисторах
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов По режимам работы различают линейные и нелинейные усилители.
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов 1 _l
- •7.2. Резистивный и резонансный усилители
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •Глава 7. Электронные усилители и преобразователи сигналов
- •8. Нелинейные преобразования сигналов
- •8.1. Нелинейный элемент и воздействие на него одного
- •Глава 8. Нелинейные преобразования сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.4. Стационарный режим автогенератора
- •8.4. Стационарный режим автогенератора
- •Глава 8. Нелинейные преобразования сигналов Из анализа уравнения баланса фаз (3) следует, что в автогенерато-
- •8.4. Стационарный режим автогенератора
- •Глава 8. Нелинейные преобразования сигналов Для генерации последовательности прямоугольных импульсов ис-
- •Глава 8. Нелинейные преобразования сигналов 4. Рассчитайте амплитуду напряжения на выходе умножителя частоты в два раза, выполненного на аналоговом перемножителе, если коэффициент k пе-
- •Глава 9. Импульсные и цифровые устройства 9. Импульсные и цифровые устройства 9.1. Импульсные сигналы и электронный ключ в предыдущих главах рассматривались аналоговые сигналы: по-
- •9.1. Импульсные сигналы и электронный ключ
- •Глава 9. Импульсные и цифровые устройства
- •9.1. Импульсные сигналы и электронный ключ
- •Глава 9. Импульсные и цифровые устройства
- •9.2. Базовые логические элементы
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства Рассмотрим работу схемы ттл-элемента при подаче различных
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства
- •9.3. Комбинационные устройства
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства Комбинационная схема, выполняющая арифметическое сложение
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства
- •9.4. Триггеры
- •9.4. Триггеры
- •9.4. Триггеры
- •Глава 9. Импульсные и цифровые устройства
- •9.5. Счетчики и регистры
- •9.5. Счетчики и регистры
- •Глава 9. Импульсные и цифровые устройства
- •9.5. Счетчики и регистры
- •Глава 9. Импульсные и цифровые устройства
- •Глава 10. Цифровая обработка сигналов 10. Цифровая обработка сигналов 10.1. Дискретизация и квантование Цифровая обработка сигналов (цос) — это преобразование фор-
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.2. Аналого-цифровые и цифро-аналоговые
- •Глава 10. Цифровая обработка сигналов
- •Глава 10. Цифровая обработка сигналов
- •10.3. Цифровые фильтры
- •10.3. Цифровые фильтры
- •Глава 10. Цифровая обработка сигналов На рис. 2 в качестве примера приведена схема цифрового фильтра
- •10.3. Цифровые фильтры
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •Часть II. Практикум на Electronics
- •1. Уравнения элементов и уравнения соединений
- •2. Метод комплексных амплитуд
- •3. Анализ сложных цепей
- •4. Параметры и функции четырехполюсника
- •5. Частотные характеристики фильтров
- •6. Процессы в длинных линиях
- •7. Спектры периодических сигналов (ряд Фурье)
- •8. Метод ряда Фурье
- •9. Метод интеграла Фурье
- •10. Метод преобразования Лапласа
- •II. Спектры модулированных сигналов
- •12. Характеристики диодов
- •13. Параметры и характеристики транзисторов
- •14. Усилитель на биполярном транзисторе
вольты:
1мВ = 10 В, 1мкВ = 10 b
В
и 1кВ = 1000 В. Например, для
работы
цветного кинескопа монитора компьютера
требуется напря-
жение
питания не менее 20 киловольт, а для
питания современных
микропроцессоров
требуется напряжение менее 3 вольт.
Причем если
первое
напряжение является опасным для жизни
человека, то второе
напряжение
считается неопасным (в лабораторных
условиях безопас-
ным
считается напряжение 36 вольт и менее).
Ток
и напряжение в радиоэлектронных
устройствах и компьюте-Глава 1. Электрические цепи
рах, в основном, используются для передачи информации. В этом
случае их называют сигналами (или колебаниями).
Кроме основных характеристик состояния цепи — тока и напря-
жения, на практике часто требуется знать энергию и мощность элек-
трического тока. Энергия и мощность используются в радиоэлектро-
нике для оценки не основных (но важных) энергетических параметров
цепи. С их помощью определяются требования к источникам питания
радиоэлектронной аппаратуры и компьютеров, рассчитывается кпд
устройства, выясняется необходимость в системе охлаждения и т. п.
В радиоэлектронике мощность определяется через основные элек-
трические характеристики — напряжение и ток. Так как u = dW Idq,
то энергия dW = udq и, с учетом того, что dq = idt, после интегри-
рования получим формулу для расчета электрической энергии, по-
требляемой данным участком цепи к моменту времени t
Дифференцируя полученное выражение по времени t, получим
формулу для расчета мгновенной мощности, потребляемой цепью
При p(t) > 0 энергия, потребляемая участком цепи, увеличивается,
а при p(t) < 0 — уменьшается. Мощность измеряется в ваттах (Вт).
При постоянном напряжении и постоянном токе в цепи мгновен-
ная мощность постоянна. Например, мощность постоянного тока, по-
требляемая от источника питания персонального компьютера, являет-
ся положительной величиной, не превышающей, как правило, 150 Вт.

Если
снять крышку (корпус) с компьютера и с
других радиоэлек-1.2. Элементы электрических цепей и их уравнения
1.2. Элементы электрических цепей и их уравнения
тронных устройств, то внутри обнаружим большое число разнообраз-
ных радиоэлементов, имеющих различные размеры, разную форму,
большое или малое число выводов. Оказывается, что с использовани-
ем идеализации, обобщения и абстрагирования все многообразие ре-
альных радиоэлементов компьютера или любого другого радиоэлек-
тронного устройства можно описать с помощью только лишь п я т и
базовых элементов.
Идеальный резистор — это элемент, в котором электрическая
энергия превращается в тепло. В идеальном резисторе даже частично
энергия тока не превращается в энергию электрического поля, как в
конденсаторе, или в энергию магнитного поля, как в катушке индук-
тивности. Для обозначения резистора используются буквы R или г. В
дальнейшем для краткости прилагательное "идеальный" будем часто
опускать, когда из контекста ясно, о каком элементе идет речь. В об-
ласти низких частот к идеальному резистору по своим свойствам
близки: лампочка накаливания (если пренебречь превращением части
энергии в свет), радиотехнический резистор, электронагревательные
приборы и т. п.
Идеальный конденсатор — это элемент, в котором энергия элек-
трического тока превращается только в энергию электрического поля.
Для обозначения конденсатора используется буква С. В области низ-
ких частот к идеальному конденсатору близок радиотехнический кон-
денсатор.
Идеальная катушка индуктивности — это элемент, где энергия
электрического тока превращается в энергию магнитного поля. Для
обозначения катушки используется буква L. В области низких частот
к идеальной катушке близки обмотки трансформаторов источников
питания, обмотки электрических двигателей (например, электродвига-
телей вентиляторов в ЭВМ) и радиотехнические катушки.
Идеальный источник напряжения — это устройство, на зажимах
которого поддерживается заданное напряжение при любом конечном
токе через него. Случай подключения к источнику нагрузки с н у л е -
в ы м сопротивлением считается невозможным. Для обозначения ис-
точника напряжения используются буквы Е и е. К идеальному источ-
