
- •Часть I. Цепи, сигналы, электроника и схемотехника
- •Часть II. Практикум на Electronics Workbench
- •Глава 1. Электрические цепи Часть I. Цепи, сигналы, электроника и схемотехника
- •1. Электрические цепи
- •1.1. Ток, напряжение, мощность и энергия
- •1.1. Ток, напряжение, мощность и энергия
- •Глава 1. Электрические цепи
- •1.2. Элементы электрических цепей и их уравнения
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи нику напряжения при малых токах близки аккумуляторы, батареи, электрическая сеть 220 в/50 Гц. Идеальный источник тока — это элемент, генерирующий задан-
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи л . Емкость измеряется в фарадах (ф). В радиоэлектронике чаще ис-
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи Из анализа этой формулы следует, что условие передачи максиму-
- •1.3. Электрическая цепь и уравнения соединений
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи Контур цепи — это замкнутый путь из ветвей. Например, в цепи
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи
- •2. Цепи при гармоническом воздействии
- •2.1. Гармоническое колебание и комплексная амплитуда
- •2.1. Гармоническое колебание и комплексная амплитуда
- •Глава 2. Цепи при гармоническом воздействии Комплексные амплитуды нескольких сигналов удобно изобразить
- •2.2. Уравнения элементов в комплексной форме
- •2.2. Уравнения элементов в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.2. Уравнения элементов в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.3. Уравнения соединений в комплексной форме
- •2.3. Уравнения соединений в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.3. Уравнения соединений в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.4, Мгновенная, активная, полная и реактивная мощности
- •2.4. Мгновенная, активная, полная и реактивная мощности
- •Глава 2. Цепи при гармоническом воздействии
- •2.4. Мгновенная, активная, полная и реактивная мощности
- •Глава 2. Цепи при гармоническом воздействии
- •Глава 3. Методы анализа сложных электрических цепей 3. Методы анализа сложных электрических цепей
- •3.1. Особенности анализа сложных цепей
- •3.2. Метод узловых напряжений
- •3.2. Метод узловых напряжений
- •Глава 3. Методы анализа сложных электрических цепей
- •3.2. Метод узловых напряжений
- •Глава 3. Методы анализа сложных электрических цепей
- •3.3. Метод контурных токов
- •3.3. Метод контурных токов
- •Глава 3. Методы анализа сложных электрических цепей Рассмотрим изменения, возникающие в уравнениях цепи, обуслов-
- •3.3. Метод контурных токов
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •Глава 4. Четырехполюсники, фильтры и длинные линии 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии Кроме ачх для описания фильтра используют фазочастотную ха-
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •Глава 4. Четырехполюсники, фильтры и длинные линии 7. Используя частотные свойства конденсатора и катушки индуктивности, объяснить работу фнч т-типа.
- •5.1. Линейные пространства и понятие спектра сигнала
- •5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.2. Спектр периодического сигнала
- •5.2. Спектр периодического сигнала
- •Глава 5. Сигналы и их спектры
- •5.2. Спектр периодического сигнала
- •Глава 5. Сигналы и их спектры
- •5.3. Спектр непериодического сигнала и преобразование
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры Например, из первой теоремы следует, что при увеличении скоро-
- •5.4. Преобразование сигналов в линейной цепи
- •5.4. Преобразование сигналов в линейной цепи
- •Глава 5. Сигналы и их спектры
- •5.4. Преобразование сигналов в линейной цепи
- •Глава 5. Сигналы и их спектры Таким образом, для линейной цепи справедливы три уравнения
- •5.5. Модулированные сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 6. Полупроводниковые приборы 6. Полупроводниковые приборы 6.1. Электронно-дырочный переход и полупроводниковые диоды к полупроводникам относят материалы, проводимость которых
- •Глава 6. Полупроводниковые приборы установившемся состоянии диффузионный ток будет равен дрейфо- вому току. Пусть к р-и-переходу подключен источник небольшого постоянно-
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы Импульсные диоды предназначены для работы с быстро изменяю-
- •6.2. Биполярные транзисторы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы 7. Перечислите все разновидности биполярных и полевых транзисторов. При- ведите их условные обозначения.
- •7.1. Три основные схемы усилителей на транзисторах
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов По режимам работы различают линейные и нелинейные усилители.
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов 1 _l
- •7.2. Резистивный и резонансный усилители
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •Глава 7. Электронные усилители и преобразователи сигналов
- •8. Нелинейные преобразования сигналов
- •8.1. Нелинейный элемент и воздействие на него одного
- •Глава 8. Нелинейные преобразования сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.4. Стационарный режим автогенератора
- •8.4. Стационарный режим автогенератора
- •Глава 8. Нелинейные преобразования сигналов Из анализа уравнения баланса фаз (3) следует, что в автогенерато-
- •8.4. Стационарный режим автогенератора
- •Глава 8. Нелинейные преобразования сигналов Для генерации последовательности прямоугольных импульсов ис-
- •Глава 8. Нелинейные преобразования сигналов 4. Рассчитайте амплитуду напряжения на выходе умножителя частоты в два раза, выполненного на аналоговом перемножителе, если коэффициент k пе-
- •Глава 9. Импульсные и цифровые устройства 9. Импульсные и цифровые устройства 9.1. Импульсные сигналы и электронный ключ в предыдущих главах рассматривались аналоговые сигналы: по-
- •9.1. Импульсные сигналы и электронный ключ
- •Глава 9. Импульсные и цифровые устройства
- •9.1. Импульсные сигналы и электронный ключ
- •Глава 9. Импульсные и цифровые устройства
- •9.2. Базовые логические элементы
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства Рассмотрим работу схемы ттл-элемента при подаче различных
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства
- •9.3. Комбинационные устройства
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства Комбинационная схема, выполняющая арифметическое сложение
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства
- •9.4. Триггеры
- •9.4. Триггеры
- •9.4. Триггеры
- •Глава 9. Импульсные и цифровые устройства
- •9.5. Счетчики и регистры
- •9.5. Счетчики и регистры
- •Глава 9. Импульсные и цифровые устройства
- •9.5. Счетчики и регистры
- •Глава 9. Импульсные и цифровые устройства
- •Глава 10. Цифровая обработка сигналов 10. Цифровая обработка сигналов 10.1. Дискретизация и квантование Цифровая обработка сигналов (цос) — это преобразование фор-
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.2. Аналого-цифровые и цифро-аналоговые
- •Глава 10. Цифровая обработка сигналов
- •Глава 10. Цифровая обработка сигналов
- •10.3. Цифровые фильтры
- •10.3. Цифровые фильтры
- •Глава 10. Цифровая обработка сигналов На рис. 2 в качестве примера приведена схема цифрового фильтра
- •10.3. Цифровые фильтры
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •Часть II. Практикум на Electronics
- •1. Уравнения элементов и уравнения соединений
- •2. Метод комплексных амплитуд
- •3. Анализ сложных цепей
- •4. Параметры и функции четырехполюсника
- •5. Частотные характеристики фильтров
- •6. Процессы в длинных линиях
- •7. Спектры периодических сигналов (ряд Фурье)
- •8. Метод ряда Фурье
- •9. Метод интеграла Фурье
- •10. Метод преобразования Лапласа
- •II. Спектры модулированных сигналов
- •12. Характеристики диодов
- •13. Параметры и характеристики транзисторов
- •14. Усилитель на биполярном транзисторе
Для
цепи, содержащей как источники напряжения,
так и источни-3.4. Свойства линейных цепей
ки тока, принцип суперпозиции формулируется следующем образом:
реакция на множество источников в цепи равна сумме реакций на ка-
ждый из источников в отдельности. Под реакцией здесь понимаются
или ток, или напряжение на любом элементе цепи.
На практике метод наложения удобно использовать при расчете
напряжения или тока в некоторой одной ветви сложной цепи. В нача-
ле учитывается первый источник и рассчитываются частичные напря-
жение или ток ветви, вызванные одним этим источником. Эта проце-
дура повторяется последовательно для остальных источников.
Результирующие напряжения и токи находим как суммы частичных
напряжений или токов. Наиболее часто метод наложения использует-
ся при расчете напряжения или тока через нагрузку.
Кроме принципа суперпозиции при расчетах сложных цепей часто
используют теоремы об эквивалентных источниках. Различают тео-
рему об эквивалентном источнике напряжения и теорему об эквива-
лентном источнике тока.
а)
б)
Рис. 1
Теорема об эквивалентном источнике напряжения (рис. 1) форму-
лируется следующим образом. Любую по сложности электрическую
цепь, имеющую два зажима для подключения нагрузки, можно заме-
нить эквивалентным источником напряжения. ЭДС этого источника
равна напряжению холостого хода на зажимах цепи, а внутреннее со-
противление равно сопротивлению между зажимами цепи при исклю-
чении из цепи источников (методами короткого замыкания для ЭДС и
холостого хода для источников тока).
Пример такого преобразования показан на рис. 1: на рис. 1, а пока-
зана сложная электрическая цепь, а на рис. 1,6 — эквивалентный ис-
точник напряжения. Докажем теорему, используя рис. 2. На этом ри-

сунке
показан ряд последовательных
преобразований сложной элек-
трической
цепи.
На
рис. 2, а приведена исходная схема цепи.
В эту цепь дополни-
тельно
вводим две ЭДС с одинаковыми напряжениями
t/xx
(рис.
2, б).
Так
как эти ЭДС направлены в разные стороны,
то ток через нагрузку
не
изменится.
На
рис. 2, в и рис. 2, г показаны цепи, в которых
осталось по однойГлава 3. Методы анализа сложных электрических цепей
из двух введенных ЭДС. Покажем, что в схеме рис. 2, в ток /н, =0.
Для этого разорвем верхний провод и образуем два контакта а и Ь.
Между точкой а и нижним проводом-корпусом возникает напряжение
холостого хода U^. Так как при разрыве цепи ток через нагрузку не
в)
Рис. 2
течет, то между точкой b и корпусом возникает такое же напряжение
f/xx. Следовательно, потенциалы точек а и b одинаковы относитель-
но корпуса, точки а и b можно соединить проводником друг с другом
и ток через нагрузку при этом не возникает: /Н1 = 0.
Ток через нагрузку в цепи, показанной на рис. 2, г, будет опреде-
ляться напряжением холостого хода и сопротивлением исходной це-

пи,
в которой исключены все источники. В
соответствии с принципом
суперпозиции
/н
=
/Н|
+
/ ш
.
Так как первое слагаемое в правой части
приведенного
равенства равно нулю, то теорема
доказана.
Теорема
об эквивалентном источнике тока (рис.
3): любую по
сложности
электрическую цепь, имеющую два зажима
для подключе-
ния
нагрузки, можно заменить эквивалентным
источником тока. Ток
этого
источника равен току короткого замыкания
цепи, а внутренняя
проводимость
равна проводимости между зажимами цепи
при исклю-
чении
из цепи источников (методами короткого
замыкания для ЭДС и
холостого
хода для источников тока).
Рис.
3
Доказательство
этой теоремы следует из взаимосвязи
источника3.4. Свойства линейных цепей
тока и источника напряжения. Используем вначале доказанную выше
теорему об эквивалентном источнике напряжения — представим
сложную цепь в виде эквивалентного источника напряжения. Затем
источник напряжения заменим эквивалентным источником тока. Но
ток эквивалентного источника тока находится как ток короткого за-
мыкания источника напряжения, а внутренняя проводимость равна
проводимости внутреннего сопротивления источника напряжения.
Следовательно, теорема доказана.
Теоремы об эквивалентных источниках широко используются на
практике при расчете тока через изменяемую нагрузку, когда источ-
ником сигнала являются сложные устройства: передатчики, модемы,
усилители и т. п. Несмотря на сложность всех этих устройств, их
можно представить в виде эквивалентных источника тока или источ-
ника напряжения. При изменении нагрузки в этом случае не требуется
производить перерасчет всей сложной цепи. Достаточно заново рас-
считать ток в простой схеме, содержащей эквивалентный источник и
измененную нагрузку.
При теоретических исследованиях и при решении практических
задач используются также теорема (принцип) обратимости (взаимно-
