
- •Часть I. Цепи, сигналы, электроника и схемотехника
- •Часть II. Практикум на Electronics Workbench
- •Глава 1. Электрические цепи Часть I. Цепи, сигналы, электроника и схемотехника
- •1. Электрические цепи
- •1.1. Ток, напряжение, мощность и энергия
- •1.1. Ток, напряжение, мощность и энергия
- •Глава 1. Электрические цепи
- •1.2. Элементы электрических цепей и их уравнения
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи нику напряжения при малых токах близки аккумуляторы, батареи, электрическая сеть 220 в/50 Гц. Идеальный источник тока — это элемент, генерирующий задан-
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи л . Емкость измеряется в фарадах (ф). В радиоэлектронике чаще ис-
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи Из анализа этой формулы следует, что условие передачи максиму-
- •1.3. Электрическая цепь и уравнения соединений
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи Контур цепи — это замкнутый путь из ветвей. Например, в цепи
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи
- •2. Цепи при гармоническом воздействии
- •2.1. Гармоническое колебание и комплексная амплитуда
- •2.1. Гармоническое колебание и комплексная амплитуда
- •Глава 2. Цепи при гармоническом воздействии Комплексные амплитуды нескольких сигналов удобно изобразить
- •2.2. Уравнения элементов в комплексной форме
- •2.2. Уравнения элементов в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.2. Уравнения элементов в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.3. Уравнения соединений в комплексной форме
- •2.3. Уравнения соединений в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.3. Уравнения соединений в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.4, Мгновенная, активная, полная и реактивная мощности
- •2.4. Мгновенная, активная, полная и реактивная мощности
- •Глава 2. Цепи при гармоническом воздействии
- •2.4. Мгновенная, активная, полная и реактивная мощности
- •Глава 2. Цепи при гармоническом воздействии
- •Глава 3. Методы анализа сложных электрических цепей 3. Методы анализа сложных электрических цепей
- •3.1. Особенности анализа сложных цепей
- •3.2. Метод узловых напряжений
- •3.2. Метод узловых напряжений
- •Глава 3. Методы анализа сложных электрических цепей
- •3.2. Метод узловых напряжений
- •Глава 3. Методы анализа сложных электрических цепей
- •3.3. Метод контурных токов
- •3.3. Метод контурных токов
- •Глава 3. Методы анализа сложных электрических цепей Рассмотрим изменения, возникающие в уравнениях цепи, обуслов-
- •3.3. Метод контурных токов
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •Глава 4. Четырехполюсники, фильтры и длинные линии 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии Кроме ачх для описания фильтра используют фазочастотную ха-
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •Глава 4. Четырехполюсники, фильтры и длинные линии 7. Используя частотные свойства конденсатора и катушки индуктивности, объяснить работу фнч т-типа.
- •5.1. Линейные пространства и понятие спектра сигнала
- •5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.2. Спектр периодического сигнала
- •5.2. Спектр периодического сигнала
- •Глава 5. Сигналы и их спектры
- •5.2. Спектр периодического сигнала
- •Глава 5. Сигналы и их спектры
- •5.3. Спектр непериодического сигнала и преобразование
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры Например, из первой теоремы следует, что при увеличении скоро-
- •5.4. Преобразование сигналов в линейной цепи
- •5.4. Преобразование сигналов в линейной цепи
- •Глава 5. Сигналы и их спектры
- •5.4. Преобразование сигналов в линейной цепи
- •Глава 5. Сигналы и их спектры Таким образом, для линейной цепи справедливы три уравнения
- •5.5. Модулированные сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 6. Полупроводниковые приборы 6. Полупроводниковые приборы 6.1. Электронно-дырочный переход и полупроводниковые диоды к полупроводникам относят материалы, проводимость которых
- •Глава 6. Полупроводниковые приборы установившемся состоянии диффузионный ток будет равен дрейфо- вому току. Пусть к р-и-переходу подключен источник небольшого постоянно-
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы Импульсные диоды предназначены для работы с быстро изменяю-
- •6.2. Биполярные транзисторы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы 7. Перечислите все разновидности биполярных и полевых транзисторов. При- ведите их условные обозначения.
- •7.1. Три основные схемы усилителей на транзисторах
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов По режимам работы различают линейные и нелинейные усилители.
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов 1 _l
- •7.2. Резистивный и резонансный усилители
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •Глава 7. Электронные усилители и преобразователи сигналов
- •8. Нелинейные преобразования сигналов
- •8.1. Нелинейный элемент и воздействие на него одного
- •Глава 8. Нелинейные преобразования сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.4. Стационарный режим автогенератора
- •8.4. Стационарный режим автогенератора
- •Глава 8. Нелинейные преобразования сигналов Из анализа уравнения баланса фаз (3) следует, что в автогенерато-
- •8.4. Стационарный режим автогенератора
- •Глава 8. Нелинейные преобразования сигналов Для генерации последовательности прямоугольных импульсов ис-
- •Глава 8. Нелинейные преобразования сигналов 4. Рассчитайте амплитуду напряжения на выходе умножителя частоты в два раза, выполненного на аналоговом перемножителе, если коэффициент k пе-
- •Глава 9. Импульсные и цифровые устройства 9. Импульсные и цифровые устройства 9.1. Импульсные сигналы и электронный ключ в предыдущих главах рассматривались аналоговые сигналы: по-
- •9.1. Импульсные сигналы и электронный ключ
- •Глава 9. Импульсные и цифровые устройства
- •9.1. Импульсные сигналы и электронный ключ
- •Глава 9. Импульсные и цифровые устройства
- •9.2. Базовые логические элементы
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства Рассмотрим работу схемы ттл-элемента при подаче различных
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства
- •9.3. Комбинационные устройства
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства Комбинационная схема, выполняющая арифметическое сложение
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства
- •9.4. Триггеры
- •9.4. Триггеры
- •9.4. Триггеры
- •Глава 9. Импульсные и цифровые устройства
- •9.5. Счетчики и регистры
- •9.5. Счетчики и регистры
- •Глава 9. Импульсные и цифровые устройства
- •9.5. Счетчики и регистры
- •Глава 9. Импульсные и цифровые устройства
- •Глава 10. Цифровая обработка сигналов 10. Цифровая обработка сигналов 10.1. Дискретизация и квантование Цифровая обработка сигналов (цос) — это преобразование фор-
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.2. Аналого-цифровые и цифро-аналоговые
- •Глава 10. Цифровая обработка сигналов
- •Глава 10. Цифровая обработка сигналов
- •10.3. Цифровые фильтры
- •10.3. Цифровые фильтры
- •Глава 10. Цифровая обработка сигналов На рис. 2 в качестве примера приведена схема цифрового фильтра
- •10.3. Цифровые фильтры
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •Часть II. Практикум на Electronics
- •1. Уравнения элементов и уравнения соединений
- •2. Метод комплексных амплитуд
- •3. Анализ сложных цепей
- •4. Параметры и функции четырехполюсника
- •5. Частотные характеристики фильтров
- •6. Процессы в длинных линиях
- •7. Спектры периодических сигналов (ряд Фурье)
- •8. Метод ряда Фурье
- •9. Метод интеграла Фурье
- •10. Метод преобразования Лапласа
- •II. Спектры модулированных сигналов
- •12. Характеристики диодов
- •13. Параметры и характеристики транзисторов
- •14. Усилитель на биполярном транзисторе
дуль,
а <р — начальная фаза комплексного
сопротивления участка це-
пи.
Сопротивление двухполюсника на схемах
может изображаться в
виде
прямоугольника — аналогично обозначению
резистора.
Отметим,
что в сложных схемах иногда содержатся
участки с об-Глава 2. Цепи при гармоническом воздействии
ратными связями или участки, содержащие мостовые схемы. В этом
случае для расчета комплексного сопротивления цепи требуются
формулы перехода от соединения типа "треугольник" к соединению
типа "звезда" и наоборот. Эти формулы можно найти в литературе,
указанной в конце пособия. Однако в любом случае сопротивление
участка сложной цепи можно найти, записывая законы Ома и Кирх-
гофа.
2.4, Мгновенная, активная, полная и реактивная мощности
Мощность, потребляемая цепью, — не основная, но важная харак-
теристика радиоэлектронного устройства. При увеличении потреб-
ляемой мощности увеличиваются размеры и масса источников пита-
ния, аккумуляторов, батарей и гальванических элементов. От
величины потребляемой мощности зависит использование вентилято-
ров и радиаторов охлаждения. Минимальные и максимальные мощно-
сти принимаемого и передаваемого сигналов — важнейшие парамет-
ры приемников и передатчиков соответственно.
Рис. 1
Пусть через участок цепи протекает гармонический ток и на этом
участке возникает напряжение. Рассмотрим для этой цепи мгновен-
ную мощность p(t)=u(t)i(t) (рис. 1).При гармонических токе
/'(?)=/mcos(cof + (p,) и напряжении u(t)=Umcos((ot + yu) выражение
для
мгновенной
мощности
+ ф„).
будет
иметь
вид

Из
анализа кривых рис. 1 видно, что мгновенная
мощность может
быть
как быть положительной, так и отрицательной.
Так как
(\2.4. Мгновенная, активная, полная и реактивная мощности
p(t)=
, где W— энергия, потребляемая участком цепи, то при
Л
p(t)>Q энергия, поступающая в участок цепи, возрастает, а при
p(t)< 0 энергия из участка цепи отдается во внешнюю цепь. Энергия
накапливается в двухполюснике при наличии реактивных элементов:
в конденсаторе энергия может накапливаться в виде энергии электри-
ческого поля, а в катушке индуктивности — в виде энергии магнитно-
го поля. Эта накопленная энергия может, превращаясь в энергию
электрического тока, передаваться во внешнюю цепь.
Перепишем формулу для мгновенной мощности следующим обра-
зом : p(t) = -- ImUm cos(2o)f + ф,. + ф„)+ - ImUm соз(ф„ - ср,).
Из анализа полученного выражения следует, что мгновенная мощ-
ность содержит постоянную составляющую. Эту составляющую на-
зывают средней (активной) мощностью, потребляемой электрической
цепью:
dw
Коэффициент k = со8(ф„ -ф;) называется коэффициентом мощно-
сти. Он имеет большое значение при оценке качества различных ра-
диоэлектронных устройств: компьютеров, приемников, передатчиков
и др. Радиоэлектронное устройство считается плохо спроектирован-
ным, если его коэффициент k существенно меньше единицы. При этом
устройство потребляет мало активной мощности, но по цепям пита-
ния такого устройства протекают увеличенные токи и для питания та-
кого устройства нужно использовать электрические генераторы, вы-
рабатывающие увеличенные напряжения.
Радиоэлектронное устройство потребляет максимум активной
мощности, если со5(ф„ -ф,.) = 1. На рис. 2 приведена векторная диа-
грамма напряжений и токов в цепи, для которой коэффициент k равен
1. Реактивная составляющая сопротивления этой цепи равна нулю,
разность фаз ф„ -ф, =0 и поэтому Р0 =
ImUm. Перепишем послед-
нее выражение в форме Рй = -,=- - ^ = IdUd и учтем, что при постоян-
