
- •Часть I. Цепи, сигналы, электроника и схемотехника
- •Часть II. Практикум на Electronics Workbench
- •Глава 1. Электрические цепи Часть I. Цепи, сигналы, электроника и схемотехника
- •1. Электрические цепи
- •1.1. Ток, напряжение, мощность и энергия
- •1.1. Ток, напряжение, мощность и энергия
- •Глава 1. Электрические цепи
- •1.2. Элементы электрических цепей и их уравнения
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи нику напряжения при малых токах близки аккумуляторы, батареи, электрическая сеть 220 в/50 Гц. Идеальный источник тока — это элемент, генерирующий задан-
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи л . Емкость измеряется в фарадах (ф). В радиоэлектронике чаще ис-
- •1.2. Элементы электрических цепей и их уравнения
- •Глава 1. Электрические цепи Из анализа этой формулы следует, что условие передачи максиму-
- •1.3. Электрическая цепь и уравнения соединений
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи Контур цепи — это замкнутый путь из ветвей. Например, в цепи
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи
- •1.3. Электрическая цепь и уравнения соединений
- •Глава 1. Электрические цепи
- •2. Цепи при гармоническом воздействии
- •2.1. Гармоническое колебание и комплексная амплитуда
- •2.1. Гармоническое колебание и комплексная амплитуда
- •Глава 2. Цепи при гармоническом воздействии Комплексные амплитуды нескольких сигналов удобно изобразить
- •2.2. Уравнения элементов в комплексной форме
- •2.2. Уравнения элементов в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.2. Уравнения элементов в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.3. Уравнения соединений в комплексной форме
- •2.3. Уравнения соединений в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.3. Уравнения соединений в комплексной форме
- •Глава 2. Цепи при гармоническом воздействии
- •2.4, Мгновенная, активная, полная и реактивная мощности
- •2.4. Мгновенная, активная, полная и реактивная мощности
- •Глава 2. Цепи при гармоническом воздействии
- •2.4. Мгновенная, активная, полная и реактивная мощности
- •Глава 2. Цепи при гармоническом воздействии
- •Глава 3. Методы анализа сложных электрических цепей 3. Методы анализа сложных электрических цепей
- •3.1. Особенности анализа сложных цепей
- •3.2. Метод узловых напряжений
- •3.2. Метод узловых напряжений
- •Глава 3. Методы анализа сложных электрических цепей
- •3.2. Метод узловых напряжений
- •Глава 3. Методы анализа сложных электрических цепей
- •3.3. Метод контурных токов
- •3.3. Метод контурных токов
- •Глава 3. Методы анализа сложных электрических цепей Рассмотрим изменения, возникающие в уравнениях цепи, обуслов-
- •3.3. Метод контурных токов
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •3.4. Свойства линейных цепей
- •Глава 3. Методы анализа сложных электрических цепей
- •Глава 4. Четырехполюсники, фильтры и длинные линии 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.1. Четырехполюсники
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии Кроме ачх для описания фильтра используют фазочастотную ха-
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.2. Электрические фильтры
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.3. Длинные линии и телеграфные уравнения
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •4.4. Коэффициент отражения, стоячие и смешанные волны
- •Глава 4. Четырехполюсники, фильтры и длинные линии
- •Глава 4. Четырехполюсники, фильтры и длинные линии 7. Используя частотные свойства конденсатора и катушки индуктивности, объяснить работу фнч т-типа.
- •5.1. Линейные пространства и понятие спектра сигнала
- •5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.1. Линейные пространства и понятие спектра сигнала
- •Глава 5. Сигналы и их спектры
- •5.2. Спектр периодического сигнала
- •5.2. Спектр периодического сигнала
- •Глава 5. Сигналы и их спектры
- •5.2. Спектр периодического сигнала
- •Глава 5. Сигналы и их спектры
- •5.3. Спектр непериодического сигнала и преобразование
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 5. Сигналы и их спектры Например, из первой теоремы следует, что при увеличении скоро-
- •5.4. Преобразование сигналов в линейной цепи
- •5.4. Преобразование сигналов в линейной цепи
- •Глава 5. Сигналы и их спектры
- •5.4. Преобразование сигналов в линейной цепи
- •Глава 5. Сигналы и их спектры Таким образом, для линейной цепи справедливы три уравнения
- •5.5. Модулированные сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •5.5. Модулированные сигналы и их спектры
- •Глава 5. Сигналы и их спектры
- •Глава 6. Полупроводниковые приборы 6. Полупроводниковые приборы 6.1. Электронно-дырочный переход и полупроводниковые диоды к полупроводникам относят материалы, проводимость которых
- •Глава 6. Полупроводниковые приборы установившемся состоянии диффузионный ток будет равен дрейфо- вому току. Пусть к р-и-переходу подключен источник небольшого постоянно-
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы Импульсные диоды предназначены для работы с быстро изменяю-
- •6.2. Биполярные транзисторы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.2. Биполярные транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •6.3. Полевые транзисторы
- •Глава 6. Полупроводниковые приборы
- •Глава 6. Полупроводниковые приборы 7. Перечислите все разновидности биполярных и полевых транзисторов. При- ведите их условные обозначения.
- •7.1. Три основные схемы усилителей на транзисторах
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов По режимам работы различают линейные и нелинейные усилители.
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.1. Три основные схемы усилителей на транзисторах
- •Глава 7. Электронные усилители и преобразователи сигналов 1 _l
- •7.2. Резистивный и резонансный усилители
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.2. Резистивный и резонансный усилители
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.3. Обратная связь в усилителях
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •7.4. Операционный усилитель и аналоговый перемножитель
- •Глава 7. Электронные усилители и преобразователи сигналов
- •Глава 7. Электронные усилители и преобразователи сигналов
- •8. Нелинейные преобразования сигналов
- •8.1. Нелинейный элемент и воздействие на него одного
- •Глава 8. Нелинейные преобразования сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.2. Воздействие на нелинейный элемент двух сигналов
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.3. Автогенераторы гармонических колебаний
- •Глава 8. Нелинейные преобразования сигналов
- •8.4. Стационарный режим автогенератора
- •8.4. Стационарный режим автогенератора
- •Глава 8. Нелинейные преобразования сигналов Из анализа уравнения баланса фаз (3) следует, что в автогенерато-
- •8.4. Стационарный режим автогенератора
- •Глава 8. Нелинейные преобразования сигналов Для генерации последовательности прямоугольных импульсов ис-
- •Глава 8. Нелинейные преобразования сигналов 4. Рассчитайте амплитуду напряжения на выходе умножителя частоты в два раза, выполненного на аналоговом перемножителе, если коэффициент k пе-
- •Глава 9. Импульсные и цифровые устройства 9. Импульсные и цифровые устройства 9.1. Импульсные сигналы и электронный ключ в предыдущих главах рассматривались аналоговые сигналы: по-
- •9.1. Импульсные сигналы и электронный ключ
- •Глава 9. Импульсные и цифровые устройства
- •9.1. Импульсные сигналы и электронный ключ
- •Глава 9. Импульсные и цифровые устройства
- •9.2. Базовые логические элементы
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства Рассмотрим работу схемы ттл-элемента при подаче различных
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства
- •9.2. Базовые логические элементы
- •Глава 9. Импульсные и цифровые устройства
- •9.3. Комбинационные устройства
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства Комбинационная схема, выполняющая арифметическое сложение
- •9.3. Комбинационные устройства
- •Глава 9. Импульсные и цифровые устройства
- •9.4. Триггеры
- •9.4. Триггеры
- •9.4. Триггеры
- •Глава 9. Импульсные и цифровые устройства
- •9.5. Счетчики и регистры
- •9.5. Счетчики и регистры
- •Глава 9. Импульсные и цифровые устройства
- •9.5. Счетчики и регистры
- •Глава 9. Импульсные и цифровые устройства
- •Глава 10. Цифровая обработка сигналов 10. Цифровая обработка сигналов 10.1. Дискретизация и квантование Цифровая обработка сигналов (цос) — это преобразование фор-
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.1. Дискретизация и квантование
- •Глава 10. Цифровая обработка сигналов
- •10.2. Аналого-цифровые и цифро-аналоговые
- •Глава 10. Цифровая обработка сигналов
- •Глава 10. Цифровая обработка сигналов
- •10.3. Цифровые фильтры
- •10.3. Цифровые фильтры
- •Глава 10. Цифровая обработка сигналов На рис. 2 в качестве примера приведена схема цифрового фильтра
- •10.3. Цифровые фильтры
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •10.4. Дискретное преобразование Фурье
- •Глава 10. Цифровая обработка сигналов
- •Часть II. Практикум на Electronics
- •1. Уравнения элементов и уравнения соединений
- •2. Метод комплексных амплитуд
- •3. Анализ сложных цепей
- •4. Параметры и функции четырехполюсника
- •5. Частотные характеристики фильтров
- •6. Процессы в длинных линиях
- •7. Спектры периодических сигналов (ряд Фурье)
- •8. Метод ряда Фурье
- •9. Метод интеграла Фурье
- •10. Метод преобразования Лапласа
- •II. Спектры модулированных сигналов
- •12. Характеристики диодов
- •13. Параметры и характеристики транзисторов
- •14. Усилитель на биполярном транзисторе
8. Метод ряда Фурье
1. Последовательность прямоугольных импульсов поступает на
вход линейной электрической цепи. Схемы цепей приведены ниже на
рис. 1. Номер выбираемой схемы равен k = (<N>U+ 1), где <N>\2 —
вычет по модулю 12. Здесь и далее N— номер варианта. Параметры
элементов схем указаны в табл. 1. Исследуемая цепь является после-
довательным колебательным контуром (с потерями), который выпол-
няет роль полосового фильтра. Центральная частота фильтра равна
резонансной частоте контура.

Задания
на моделирование
Амплитуда
прямоугольных импульсов, поступающих
на вход це-
пи, равна N вольт, частота следования F- ЮТУкГц для группы 1 и
F= N МГц для группы 2, длительность отдельного импульса состав-
ляет 10% от длительности периода (параметр Duty cycle функцио-
нального генератора равен 10).
Таблица 1
Группа
1
2
L, мГн
100
2nN(<N>5+l)
1
2nN(<N>5+\)
С, нФ
100
2nN(<N>5+l)
1
2nN(<N>5+l)
RI, кОм
Л2,Ом
15
20
50
100
2. Получить с помощью программы EWB сигнал на выходе элек-
трической цепи. Зарисовать (распечатать) график выходного сигнала.
Сделать вывод о влиянии цепи на форму входного сигнала.
5)
6)
7)
'
9)
12)

Практикум
на Electronics Workbench
П
р и м е ч а н и е . Для повышения точности
и надежности резуль-
татов рекомендуется выбрать пункты меню: Analysis \ Analysis
Option \ Transient и установить следующие значения параметров про-
граммы EWB: ITL4 = 200...500 и TRTOL= 1 ... 0,1. (Увеличенному
быстродействию ЭВМ соответствуют большие значения ITL4 и
меньшие значения TRTOL.)
3. Рассчитать по формуле резонансную частоту контура. С помо-
щью ЭВМ найти АЧХ и центральную частоту фильтра. На централь-
ной частоте полосовой фильтр хорошо пропускает входной гармони-
ческий сигнал. Сравнить центральную частоту фильтра с
рассчитанной резонансной частотой. Рассчитать по формулам ампли-
тудный спектр входного сигнала. Нарисовать амплитудный спектр
сигнала и наложить на него график АЧХ цепи. Определить номер
гармоники, проходящей через полосовой фильтр. Рассчитать ампли-
туду сигнала на выходе цепи и построить график выходного сигнала.
Сравнить "ручные" и машинные результаты расчетов.
4*. Изменяя длительность прямоугольного импульса (параметр
Duty cycle функционального генератора), получить максимальное зна-
чение амплитуды сигнала на выходе цепи. Объяснить полученные ре-
зультаты.
5*. Увеличивая сопротивление резистора R1 и (или) уменьшая со-
противление резистора R2, получить на выходе цепи прямоугольные
импульсы с малыми искажениями.
9. Метод интеграла Фурье
1. На вход линейной цепи поступает прямоугольный импульс. Ам-
плитуда импульса равна N вольт, длительность импульса i=N мкс
для группы 1 и т = IQN не для группы 2. Здесь и далее N— номер ва-
рианта. Схемы электрических цепей приведены ниже на рис. 1. Номер
рассчитываемой схемы равен k = (<N>\2+ 1), где <A>i2 — вычет по
модулю 12. Параметры элементов схем указаны в табл. 1.
Таблица 1
Группа
L, мкГн
250N
С,пФ
Я,,кОм
Д2,Ом
R), кОм
1
2
1000N
5N
5N
0,5
1
20
40
50
80

Задания
на моделирование
2.
Рассчитать с помощью ЭВМ сигнал на
выходе электрической
цепи. Сделать вывод о влиянии цепи на искажение формы импульса.
Зарисовать (распечатать) график выходного сигнала.
П р и м е ч а н и е . В программе моделирования Electronics Work-
bench нет источника, генерирующего одиночный импульс. Следует
использовать генератор периодически повторяющихся прямоуголь-
ных импульсов, устанавливая увеличенный временной промежуток
между импульсами. При этом к началу очередного импульса переход-
ные процессы в цепи должны закончиться (как правило, достаточно
параметр Duty cycle функционального генератора установить равным
10, а частоту сигнала, равной^ = 1/1 От).
3. Рассчитать выходной сигнал по формулам метода интеграла Фу-
рье. По пяти точкам (t = 0, / = т/2, t = т, / = 2т и t -> QO) построить гра-
фик выходного сигнала. Сравнить "ручные" и машинные результаты
расчетов.
1)
R1
5)
б)
8)
-CUK^V-
R2
10)
Н)
UR1
Рис. 1
4. Собрать схему, включающую три каскадно-соединенных четы-
рехполюсника, указанных на рис. 1. Пропустить через эту сложную
