- •1. Електричне поле
- •1.1 Основні поняття. Закон Кулона
- •1.2 Основні характеристики електричного поля
- •1.3 Графічне зображення електричного поля
- •1.4 Провідники та діелектрики в електричному полі
- •2. Електрична ємність та конденсатори
- •2.1 Електрична ємність конденсатора та енергія зарядженого конденсатора
- •2. 2 Способи з’єднання конденсаторів
- •2.2.1 Паралельне з'єднання конденсаторів
- •2.2.2 Послідовне з'єднання конденсаторів
- •Напруга на конденсаторах розподіляється обернено пропорційно їх ємностям:
- •Загальна обернена ємність дорівнює сумі обернених ємностей окремих конденсаторів:
- •Мішане з’єднання конденсаторів
- •3. Електричні кола постійного струму
- •Електрорушійна сила і напруга
- •Закон Ома
- •Закон Ома для повного кола
- •Електричні кола з резисторами. Перший закон Кірхгофа
- •Властивості послідовного з'єднання:
- •Властивості паралельного з’єднання резисторів
- •Мішане з’єднання резисторів
- •Робота і потужність електричного струму
- •Режими роботи джерела електричної енергії .
- •Властивості режиму
- •Потенціальна діаграма
- •Складні електричні кола постійного струму
- •Другий закон Кірхгофа
- •Правила знаків
- •Метод накладання
- •Електричні кола змінного струму
- •Параметри змінного струму
- •Графічне зображення синусоїдних величин
- •Лінійні послідовні кола змінного струму Коло змінного струму з активним опором
- •Властивості кола з активним опором
- •Коло з індуктивністю ( ідеальна котушка )
- •Властивості кола
- •Коло з ємністю ( ідеальний конденсатор)
- •Коло змінного струму з активним опором та індуктивністю
- •Трикутник опорів
- •Графіки миттєвих значень струму, напруги та потужності
- •Розв’язання
- •Коло змінного струму з активним опором та ємністю
- •Приклад 9 Рис. 40
- •Послідовне з’єднання активного, індуктивного та ємнісного опору
- •Трикутник опорів
- •Трикутник потужностей
- •Приклад 10
- •К оливальний контур
- •Умови виникнення
- •Лiнiйнi паралельнi кола змiнного струму
- •Метод провідностей
- •Властивостi розгалуженого кола l і с
- •Символiчний метод розрахунку кiл змінного струму з паралельним та мішаним з’єднанням опорiв
- •Резонанс струмів
- •Умови виникнення
- •Властивості при резонансі струмів
- •6.Реактивна потужність всього кола дорівнює нулю з генератором обмiну енергiї немає.
- •Резонансна частота, резонансний опiр та добротнiсть контуру
- •Р озрахунок паралельних кіл методом провідностей
- •1.Повний опір віток
- •Лінійні кола несинусоїдного струму Поняття про коливання негармонійної форми
- •Симетричні несинусоїдні криві
- •Криві геометрично правильної форми
- •Діюче значення несинусоїдних величин
- •Вплив параметрів кола на форму кривої струму
- •Розрахунок лінійних кіл несинусоїдногоструму
- •Основні поняття про трифазну систему електричних кіл
- •Контрольні питання
- •З’єднання обмоток трифазного генератора зіркою
- •Порядок побудови діаграм:
- •Контрольні питання
- •З’єднання обмоток трифазного генератора трикутником
- •Контрольні питання
- •З’єднання споживачів енергії зіркою
- •Симетричне навантаження
- •Властивості при симетричному навантаженні
- •Несиметричне навантаження
- •Властивості при несиметричному навантаженні:
- •2. Коротке замикання фази при відключеному нейтральному проводі (рис 74)
- •3. Трифазне коло з нейтральним проводом, який має опір (рис 75)
- •Контрольні питання
- •З’єднання споживачів енергії трикутником
- •Властивості при з’єднанні трикутником
- •Симетричне навантаження
- •Порядок побудови діаграм
- •Несиметричне навантаження
- •Контрольні питання
- •Обертове магнітне поле трифазної системи.
- •Контрольні питання
Умови виникнення
1. Наявність послідовного з’єднання R, індуктивності L, ємності C.
2.
Рівність реактивних опорів кола
3.
Рівність частоти генератора та частоти
вільних коливань
4. Малий активний опір, менший за подвійний хвильовий
Умови отримання
Змінюємо частоту напруги живлення
Змінюємо частоту власних коливань за рахунок зміни індуктивності або ємності кола.
Властивості кола при резонансі напруг
Повний опір кола дорівнює мінімальному активному опору
Струм при резонансі максимальний
Напруга на затискачах кола при резонансі дорівнює активній напрузі, яка збігається за фазою зі струмом кола
Реактивні
напруги рівні
Коефіцієнт потужності
,
звідки кут
,
тому коло має чисто активний
характерАктивна потужність
Реактивна потужність
Повна потужність кола дорівнює активній потужності
Розглянемо вiдношення напруг на дiлянках L і С до напруги на затискачах кола:
Згiдно
з цими вiдношеннями, напруги на дiлянках
реактивних опорiв UC
і UL
будуть тим бiльшi, чим менше активний
опiр кола, i чим бiльше величина реактигних
опорiв ХL
i ХС.
Отже, у
коливальних контурах з малими активними
опорами на дiлянках L
і
С
можна дiстати
набагато більшу напругу порiвняно з
напругою на затискачах кола. Тому
вiдношення
де Q — добротнiсть контуру. Добротнiсть контуру показує, у скільки разiв хвильовий опiр бiльший вiд активного опору контуру. Чим бiльше Q, тим бiлъшим, буде величина напруги в послiдовному коливальному контурi порiвняно з напругою генератора. Звiдси добротнiсть контуру показує, у скiльки разів напруга на дiлянках L і С буде бiльша порiвняно з напругою генератора при резонансi напруг. Добротнiсть характеризує якiсть контуру. Це означає, що коливальний контур чинить малий опiр струмам ряду частот i пропускає цi струми через контур. Цей дiапазон називається для контуру смугою пропускання контуру . Залежно вiд ширини смуги пропускання частот контури бувають широкосмуговi, якi мають порiвняно великий активний опiр i вузькосмуговi, якi мають дуже малий активний опiр. Отже, смугою пропускакня коливального контуру називається смуга частот, в межах яких струм у контурi не менше 0,707 резонансного струму. Добротнiсть контуру залежить, в основному, вiд якостi котушки iндуктивностi, в якiй вiдбуваються майже всi активнi втрати контуру. Наявнiсть смуги пропускания характеризує властивiсть контуру, яка називається селективнiстю. Вибiрковістю (селективнiстю) називається властивiсть контуру виділяти (пропускати) струм частот, близьких до резонансної частоти, i приглушувати (ослабляти) струми (інших частот).
Графiки і дiаграми кола при резонансi напруг.
На
графiку показано кривi залежностi ХL
і
ХС
вiд частоти
струму так, як вони розглядалися в колах
з однiєю iндуктивнiстю i однiєю ємністю.
Для рiзних значень частоти f
графiчно визначено величину загального
реактивного опору Х
= ХL
— ХС
та побудовано
графiк залежностi загальното реактивного
опору Х
вiд кутової
частоти напруги генератора. У точцi
перетину графiка з вiссю абсцисс ХL
= ХС
знайдено
резонансну часготу
о,
вiльних коливань коливального контуру.
Якщо кутова частота генератора
бiльше вiд кутової частоти вiльних
коливань контуру
о,
то коло має iндуктивний характер ХL
> ХС.
Якщо
<
о
то коло має ємнiсний характер, ХС
> ХL.
Векторну
дiаграму кола при резонансi напруг
зображено на рис. 9.6, а. Напруги UL
і UC
компенсують
одна одну, i тому сума спадiв напруг на
опорах ХL,
ХС
i R,
яка виражає
загальну напругу, дорiвнює вектору спаду
напруги на активному опорi кола. Крiм
того, вектори UL
і UC
бiльшi
за вектор Uа
= U
, тобто
є виграш у напрузi.
Якщо роздiлити
вектори напруг на струм, то дiстанемо
дiаграму
опорiв (рис.
9.6, б), звiдси впевнюємося, що загальний
опiр дорівнює активному Z
= R.
Кривi
залежностi струму, напруги i кута зсуву
за фазою вiдчастоти генератора називаються
р е з о н а н с н и м и к р и в и м и (рис.9.7).
Крива
дiючого значення струму кола.
Якщо f
= 0, то генератор кола пiдтримуе постiйну
напругу на затискачах кола i ХC
=
=
, тому І = 0. При збiльшеннi частоти до
величини fо,
тобто до величини резонансної частоти,
ХL
з
бiльшується,
а ХC
зменшується вiд нескiнченностi до величини
ХL.
Отже, загальний
реактивний опiр Х = ХL
- ХC
за абсолютною
величиною зменшується до нуля, тому I
зростає
до максимуму. При подальшому збiльшеннi
частоти iндуктивний опiр збiльшується,
а ємнiсний зменшується. Загальний
реактивний опiр зростає, тому струм у
колi зменшується.
Крива
спаду напруги на активному опорi кола
Uа.
Ця крива вiдповiдає кривiй струму, оскiльки
Uа
= І R
тобто,
U
прямопропорцiйна
струму, а R
=const,
якщо нехтувати впливом поверхневого
ефекту. Отже, крива Uа
має таку саму форму, що й крива струму.
Крива
спаду напруги на iндуктивному опорi
UL.
Якщо f=0, ХL=0, І=0, то UL=І ХL=0. При зростаннi частоти вiд нуля до fо iндуктивний опір i струм у колi зростають, тому UL теж зростає. При незначному зростаннi f порiвняно з fо струм кола трохи зменшиться, але оскiльки ХL =ω L продовжує зростати, то UL продовжує теж зростати до максимуму. Пiсля цього, в зв’язку iз значним зменшенням струму, I зменшується, незважаючи на те, що ХL продовжує зростати.
При
f
=
,
ХL
= ω L=
,
ХС
=
І=0.
Спади
напруги на R
i С
дорiвнюють
нулю, i напруга на L
є такою, що дорiвнює вхiднiй напрузi
генератора. Такий режим аналогiчний
розiмкненню кола всерединi котушки.
Отже, вольтметр, пiдключений до затискачiв
котушки iндуктивтстi, покаже напругу
генератора U,
яка на графiку
визначається за величиною Uа
при fо.
Це зрозумiло з формули
оскiльки
UL-UC=0
при
резонансi.
Отже, при збiльшеннi кутової
частоти f
>fо
напруга на iндуктивностi UL.
не може бути
менше U
генератора;
UL
= U
генератора
тiльки при f=
.
Крива
спаду напруги на ємнiсному опорi
UC.
Якщо
f=
0, то генератор має і
подає на
затискачi кола постiйну напругу. Отже
конденсатор зарядиться до величини
напруги генератора, UC
=U.
Тому крива
UC
на графiку
починається не з нуля, а з U
генератора.
При збiльшеннi кутової частоти до
величини, близької до fо
струм у колi збiльшується iнтенсивнiше,
нiж зменшується ХC,
а тому UC=ІХC
зростає.
При зростаннi кутотової частоти близько
до резонансної струм збiльшується слабо,
а ХC
продовжуе
зменшуватися, i тому UC
зменшується
до UL
при резонанснiй
частотi. При дальшому зростаннi f
струм кола та ХC
зменшується,
отже UC
зменшується.
Крива
кута зсуву
за фазою
. При fо
напруга на
затискачах і струм кола збiгаються за
фазою
=0.
Якщо f
<fо
частота менша вiд резонансної частоти,
ХC>ХL.,
коло має активно-ємнiсний характер. При
збiльшеннi f
>fо
загальний реактивний опір X=XL-XC
збільшується, кут додатний і збільшується.
