
- •Конспект лекций по теоретической механике
- •Введение
- •Лекция 1 основные понятия статики. Аксиомы статики
- •Основные понятия
- •Аксиомы статики
- •Связи и их реакции. Аксиома связей
- •Равновесие сходящейся системы сил
- •Теорема о трех силах
- •Лекция 2 равновесие плоской системы сил
- •Сложение двух параллельных сил, направленных в одну сторону
- •Сложение двух параллельных сил, направленных в противоположные стороны
- •Пара сил и её свойства
- •Условие равновесия пар
- •Момент силы относительно центра
- •Плоская система сил
- •Приведение произвольной плоской системы сил к данному центру
- •Теорема Вариньона
- •Условия равновесия плоской системы сил
- •Лекция 3 равновесие пространственной системы сил. Центр тяжести
- •Пространственная система сил. Равнодействующая пространственной системы сходящихся сил
- •Равновесие пространственной системы сходящихся сил
- •Момент силы относительно оси
- •Равновесие произвольной пространственной системы сил
- •Частные случаи равновесия
- •Сила тяжести и центр тяжести однородных тел
- •Координаты центров тяжести однородных тел
- •Лекция 4 кинематика точки
- •Аналитические способы задания движения точки в пространстве
- •Векторно-координатный способ задания движения точки
- •Естественный способ задания движения точки
- •Определение скорости точки при различных способах задания движения
- •Векторно-координатный способ задания движения
- •Естественный способ задания движения
- •Определение ускорения точки при различных способах задания движения
- •Векторно-координатный способ задания движения
- •Естественный способ задания движения точки. Понятие о естественном трехграннике
- •Частные случаи движения точки
- •Лекция 5 простейшие движения твердого тела
- •Поступательное движение твердого тела
- •Вращение твердого тела вокруг неподвижной оси
- •Угловая скорость
- •Угловое ускорение
- •Равномерное и равнопеременное вращение
- •Определение скоростей и ускорений точек вращающегося тела. Скорости точек тела
- •Лекция 6 плоскопараллельное движение твердого тела (определение скоростей)
- •Разложение плоского движения твердого тела на поступательное и вращательное
- •Определение скоростей точек твердого тела
- •Теорема о проекциях скоростей двух точек тела
- •Мгновенный центр скоростей
- •Частные случаи определения мгновенного центра скоростей
- •План скоростей
- •Лекция 7 плоскопараллельное движение твердого тела (определение ускорений)
- •Лекция 8 динамика точки
- •Законы классической механики
- •Задачи динамики
- •Дифференциальные уравнения движения точки
- •Дифференциальные уравнения в проекциях на оси естественного трехгранника
- •Алгоритм решения основной задачи динамики
- •Лекция 9 динамика механической системы
- •Теорема о движении центра масс механической системы
- •Закон сохранения движения центра масс
- •Момент инерции тела относительно оси, радиус инерции
- •Моменты инерции некоторых тел
- •1. Тонкий однородный стержень длиной l и массой м.
- •2. Тонкое круглое однородное кольцо радиусом r и массой м.
- •3. Круглая однородная пластина (диск).
- •Момент инерции тела относительно параллельных осей
- •Лекция 10 теорема об изменении количества движения механической системы
- •Закон сохранения количества движения
- •Лекция 11 главный момент количеств движения (кинетический момент) системы относительно центра и оси
- •Закон сохранения момента количества движения точки
- •Кинетический момент вращающегося тела
- •Теорема об изменении главного момента количеств движения механической системы (теорема моментов)
- •Законы сохранения главного момента количеств движения
- •Частный случай вращающейся системы
- •Лекция 12 теорема об изменении кинетической энергии
- •Графический способ вычисления работы
- •Мощность
- •Примеры вычисления работы
- •Кинетическая энергия точки
- •Кинетическая энергия системы
- •Теорема об изменении кинетической энергии системы
- •Система с идеальными связями
- •Вычисление работы сил, приложенных к вращающемуся телу
- •Лекция 13 принцип даламбера
- •Приведение сил инерции твердого тела
- •Динамические реакции, действующие на ось вращающегося тела
- •Лекция 14 принцип возможных перемещений. Принцип даламбера – лагранжа (общее уравнение динамики)
- •Классификация связей
- •Возможные (виртуальные) перемещения
- •Число степеней свободы
- •Идеальные связи
- •Принцип возможных перемещений
- •Равновесие рычага (золотое правило механики)
- •Принцип Даламбера–Лагранжа (общее уравнение динамики)
- •Лекция 15 уравнения лагранжа -го рода
- •Обобщенные силы
- •Примеры вычисления обобщенной силы
- •Условие равновесия системы в обобщенных силах
- •Уравнения Лагранжа
- •Лекция 16 элементарная теория удара твердых тел
- •Основное уравнение теории удара
- •Общие теоремы теории удара
- •Коэффициент восстановления при ударе
- •Экспериментальное определение коэффициента восстановления
- •Прямой центральный удар двух тел (удар шаров)
- •Рекомендуемая литература
- •Содержание
- •Конспект лекций по теоретической механике
Связи и их реакции. Аксиома связей
Всякое твердое тело, которое может занимать произвольное положение в пространстве, называется свободным. Если же на тело наложены условия, ограничивающие свободу его перемещения, тело называется несвободным, а условия, ограничивающие свободу перемещения, – связями. Можно считать, что эффект действия связей такой же, как и действие сил. Силы, с которыми связи действуют на рассматриваемое тело, называются реакциями связей.
Величина и направление реакции связи зависит от действующих сил, поэтому они являются пассивными силами, а задаваемые силы – активными.
Аксиома связей. Не изменяя кинематического состояния твердого тела, каждую связь, наложенную на тело, можно отбросить, заменив ее действие силой реакции отброшенной связи.
Эта аксиома позволяет рассматривать тело как свободное, но находящееся под действием как активных, так и реактивных сил.
Равновесие сходящейся системы сил
П
усть
имеется система сил (
),
линии действия которых пересекаются в
одной точке. Такая система сил называется
сходящейся.
Перенесем все силы вдоль линий их действия в точку О, т.е. заменим её другой системой сил, приложенных в точке О. Равнодействующая такой системы равна векторной сумме данных сил, и линия её действия проходит через точку О. Зная, что все силы можно заменить равнодействующей, можно сформировать условие равновесия твердого тела под действием такой системы сил, а именно: для того чтобы твердое тело, находящееся под действием сходящейся системы сил, было в равновесии, необходимо и достаточно, чтобы равнодействующая этих сил равнялась нулю:
.
Геометрическое условие состоит в том, что силовой многоугольник, построенный на слагаемых силах, должен быть замкнутым, т.к. геометрически равнодействующая изображается вектором, замыкающим силовой многоугольник.
Из равенства
следует, что
,
если
или
.
Для равновесия системы сходящихся сил необходимо и достаточно, чтобы сумма проекций всех сил на каждую из трёх координатных осей равнялась нулю. Данное положение выражает аналитическое условие равновесия сходящейся системы сил.
Если все силы расположены в одной плоскости xOy, то достаточно двух уравнений в системе:
.
Задачи, в которых число неизвестных не превышает числа уравнений равновесия, называются статически определимыми; если число неизвестных превышает число уравнений – статически неопределимыми.
Н
апример,
для системы, изображенной на рисунке,
можно составить только два уравнения
равновесия, т.к. система сил плоская, а
неизвестных – три (ТА, ТС
и ТВ). Такая задача является
статически неопределимой и решается с
учетом деформаций в курсе «Сопротивление
материалов».
Теорема о трех силах
Если твердое тело находится в равновесии под действием трёх непараллельных сил, лежащих в одной плоскости, то линии действия этих сил пересекаются в одной точке.
Д
оказательство.
Перенесем силы
и
вдоль линий их действия в точку О
в соответствии с
аксиомой А 2. По аксиоме
А 3 сложим эти силы.
Т.к. тело находится в равновесии, то из
аксиомы А 1 следует,
что
,
и эти силы лежат на одной прямой.