
- •Конспект лекций по теоретической механике
- •Введение
- •Лекция 1 основные понятия статики. Аксиомы статики
- •Основные понятия
- •Аксиомы статики
- •Связи и их реакции. Аксиома связей
- •Равновесие сходящейся системы сил
- •Теорема о трех силах
- •Лекция 2 равновесие плоской системы сил
- •Сложение двух параллельных сил, направленных в одну сторону
- •Сложение двух параллельных сил, направленных в противоположные стороны
- •Пара сил и её свойства
- •Условие равновесия пар
- •Момент силы относительно центра
- •Плоская система сил
- •Приведение произвольной плоской системы сил к данному центру
- •Теорема Вариньона
- •Условия равновесия плоской системы сил
- •Лекция 3 равновесие пространственной системы сил. Центр тяжести
- •Пространственная система сил. Равнодействующая пространственной системы сходящихся сил
- •Равновесие пространственной системы сходящихся сил
- •Момент силы относительно оси
- •Равновесие произвольной пространственной системы сил
- •Частные случаи равновесия
- •Сила тяжести и центр тяжести однородных тел
- •Координаты центров тяжести однородных тел
- •Лекция 4 кинематика точки
- •Аналитические способы задания движения точки в пространстве
- •Векторно-координатный способ задания движения точки
- •Естественный способ задания движения точки
- •Определение скорости точки при различных способах задания движения
- •Векторно-координатный способ задания движения
- •Естественный способ задания движения
- •Определение ускорения точки при различных способах задания движения
- •Векторно-координатный способ задания движения
- •Естественный способ задания движения точки. Понятие о естественном трехграннике
- •Частные случаи движения точки
- •Лекция 5 простейшие движения твердого тела
- •Поступательное движение твердого тела
- •Вращение твердого тела вокруг неподвижной оси
- •Угловая скорость
- •Угловое ускорение
- •Равномерное и равнопеременное вращение
- •Определение скоростей и ускорений точек вращающегося тела. Скорости точек тела
- •Лекция 6 плоскопараллельное движение твердого тела (определение скоростей)
- •Разложение плоского движения твердого тела на поступательное и вращательное
- •Определение скоростей точек твердого тела
- •Теорема о проекциях скоростей двух точек тела
- •Мгновенный центр скоростей
- •Частные случаи определения мгновенного центра скоростей
- •План скоростей
- •Лекция 7 плоскопараллельное движение твердого тела (определение ускорений)
- •Лекция 8 динамика точки
- •Законы классической механики
- •Задачи динамики
- •Дифференциальные уравнения движения точки
- •Дифференциальные уравнения в проекциях на оси естественного трехгранника
- •Алгоритм решения основной задачи динамики
- •Лекция 9 динамика механической системы
- •Теорема о движении центра масс механической системы
- •Закон сохранения движения центра масс
- •Момент инерции тела относительно оси, радиус инерции
- •Моменты инерции некоторых тел
- •1. Тонкий однородный стержень длиной l и массой м.
- •2. Тонкое круглое однородное кольцо радиусом r и массой м.
- •3. Круглая однородная пластина (диск).
- •Момент инерции тела относительно параллельных осей
- •Лекция 10 теорема об изменении количества движения механической системы
- •Закон сохранения количества движения
- •Лекция 11 главный момент количеств движения (кинетический момент) системы относительно центра и оси
- •Закон сохранения момента количества движения точки
- •Кинетический момент вращающегося тела
- •Теорема об изменении главного момента количеств движения механической системы (теорема моментов)
- •Законы сохранения главного момента количеств движения
- •Частный случай вращающейся системы
- •Лекция 12 теорема об изменении кинетической энергии
- •Графический способ вычисления работы
- •Мощность
- •Примеры вычисления работы
- •Кинетическая энергия точки
- •Кинетическая энергия системы
- •Теорема об изменении кинетической энергии системы
- •Система с идеальными связями
- •Вычисление работы сил, приложенных к вращающемуся телу
- •Лекция 13 принцип даламбера
- •Приведение сил инерции твердого тела
- •Динамические реакции, действующие на ось вращающегося тела
- •Лекция 14 принцип возможных перемещений. Принцип даламбера – лагранжа (общее уравнение динамики)
- •Классификация связей
- •Возможные (виртуальные) перемещения
- •Число степеней свободы
- •Идеальные связи
- •Принцип возможных перемещений
- •Равновесие рычага (золотое правило механики)
- •Принцип Даламбера–Лагранжа (общее уравнение динамики)
- •Лекция 15 уравнения лагранжа -го рода
- •Обобщенные силы
- •Примеры вычисления обобщенной силы
- •Условие равновесия системы в обобщенных силах
- •Уравнения Лагранжа
- •Лекция 16 элементарная теория удара твердых тел
- •Основное уравнение теории удара
- •Общие теоремы теории удара
- •Коэффициент восстановления при ударе
- •Экспериментальное определение коэффициента восстановления
- •Прямой центральный удар двух тел (удар шаров)
- •Рекомендуемая литература
- •Содержание
- •Конспект лекций по теоретической механике
Закон сохранения количества движения
1. Если сумма всех внешних сил, действующих на механическую систему, равна нулю, то вектор количества движения системы есть величина постоянная по модулю и направлению.
Если
,
то
,
следовательно
.
2. Если сумма проекций всех действующих сил на какую-либо ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная.
Если
,
то
,
следовательно
.
Лекция 11 главный момент количеств движения (кинетический момент) системы относительно центра и оси
Понятие о моменте количества движения точки. Теорема об изменении момента количества движения точки. Кинетический момент. Теорема об изменении кинетического момента системы при ее движении по отношению к центру масс
М
оментом
количества движения точки относительно
некоторого центра О называется
векторная величина
,
определяемая равенством:
(1)
где
– радиус-вектор движущейся точки. Вектор
направлен перпендикулярно плоскости,
проходящей через
и центр О, а модуль равен
,
где h – кратчайшее расстояние от центра до линии действия вектора скорости.
Момент количества движения (МКД) точки относительно какой-либо оси Оz , проходящей через центр О, равен проекции вектора на эту плоскость:
.
Продифференцируем обе части уравнения (1). Для правой части
.
Выражение
как векторное произведение двух
параллельных векторов. Учитывая, что
– момент силы
относительно центра 0 , получим:
.
Теорема об изменении момента количества движения точки. Производная по времени от момента количества движения точки, взятого относительно какого-нибудь неподвижного центра, равна моменту действующей на точку силы относительно того же центра.
Закон сохранения момента количества движения точки
Из равенства следует,
что если
,
то
.
Если момент действующих сил относительно некоторого центра равен нулю, то момент количества движения точки относительно этого центра есть величина постоянная.
Такое
возможно в двух случаях: либо
,
либо плечо равно нулю, тогда эта сила
будет называться центральной,
т.е. линия ее действия проходит все время
через данный центр О
(например, сила притяжения планет к
Солнцу, сила натяжения нити при кордовой
модели).
Главным моментом
количеств движения (или кинетическим
моментом) системы относительно данного
центра О называется векторная величина
,
равная геометрической сумме моментов
количеств движения всех точек системы
относительно этого центра:
Аналогично определяются моменты количеств движения (МКД) относительно координатных осей:
,
,
.
В предыдущей лекции отмечалось, что количество движения можно рассматривать как характеристику поступательного движения. Ниже покажем, что главный МКД системы может рассматриваться как характеристика вращательного движения.
Кинетический момент вращающегося тела
Пусть тело вращается вокруг неподвижной оси z.
Определим
.
Возьмем точку К на расстоянии hК
от оси. Она будет иметь скорость, равную
VК =
hК, где
– угловая скорость тела. Тогда
.
Для всего тела
.
Т.к.
,
то
.
Кинетический момент вращающегося тела относительно оси вращения равен произведению момента инерции тела относительно этой оси на угловую скорость тела.
Если система состоит
из нескольких тел, вращающихся вокруг
одной оси, то
.