
- •Конспект лекций по теоретической механике
- •Введение
- •Лекция 1 основные понятия статики. Аксиомы статики
- •Основные понятия
- •Аксиомы статики
- •Связи и их реакции. Аксиома связей
- •Равновесие сходящейся системы сил
- •Теорема о трех силах
- •Лекция 2 равновесие плоской системы сил
- •Сложение двух параллельных сил, направленных в одну сторону
- •Сложение двух параллельных сил, направленных в противоположные стороны
- •Пара сил и её свойства
- •Условие равновесия пар
- •Момент силы относительно центра
- •Плоская система сил
- •Приведение произвольной плоской системы сил к данному центру
- •Теорема Вариньона
- •Условия равновесия плоской системы сил
- •Лекция 3 равновесие пространственной системы сил. Центр тяжести
- •Пространственная система сил. Равнодействующая пространственной системы сходящихся сил
- •Равновесие пространственной системы сходящихся сил
- •Момент силы относительно оси
- •Равновесие произвольной пространственной системы сил
- •Частные случаи равновесия
- •Сила тяжести и центр тяжести однородных тел
- •Координаты центров тяжести однородных тел
- •Лекция 4 кинематика точки
- •Аналитические способы задания движения точки в пространстве
- •Векторно-координатный способ задания движения точки
- •Естественный способ задания движения точки
- •Определение скорости точки при различных способах задания движения
- •Векторно-координатный способ задания движения
- •Естественный способ задания движения
- •Определение ускорения точки при различных способах задания движения
- •Векторно-координатный способ задания движения
- •Естественный способ задания движения точки. Понятие о естественном трехграннике
- •Частные случаи движения точки
- •Лекция 5 простейшие движения твердого тела
- •Поступательное движение твердого тела
- •Вращение твердого тела вокруг неподвижной оси
- •Угловая скорость
- •Угловое ускорение
- •Равномерное и равнопеременное вращение
- •Определение скоростей и ускорений точек вращающегося тела. Скорости точек тела
- •Лекция 6 плоскопараллельное движение твердого тела (определение скоростей)
- •Разложение плоского движения твердого тела на поступательное и вращательное
- •Определение скоростей точек твердого тела
- •Теорема о проекциях скоростей двух точек тела
- •Мгновенный центр скоростей
- •Частные случаи определения мгновенного центра скоростей
- •План скоростей
- •Лекция 7 плоскопараллельное движение твердого тела (определение ускорений)
- •Лекция 8 динамика точки
- •Законы классической механики
- •Задачи динамики
- •Дифференциальные уравнения движения точки
- •Дифференциальные уравнения в проекциях на оси естественного трехгранника
- •Алгоритм решения основной задачи динамики
- •Лекция 9 динамика механической системы
- •Теорема о движении центра масс механической системы
- •Закон сохранения движения центра масс
- •Момент инерции тела относительно оси, радиус инерции
- •Моменты инерции некоторых тел
- •1. Тонкий однородный стержень длиной l и массой м.
- •2. Тонкое круглое однородное кольцо радиусом r и массой м.
- •3. Круглая однородная пластина (диск).
- •Момент инерции тела относительно параллельных осей
- •Лекция 10 теорема об изменении количества движения механической системы
- •Закон сохранения количества движения
- •Лекция 11 главный момент количеств движения (кинетический момент) системы относительно центра и оси
- •Закон сохранения момента количества движения точки
- •Кинетический момент вращающегося тела
- •Теорема об изменении главного момента количеств движения механической системы (теорема моментов)
- •Законы сохранения главного момента количеств движения
- •Частный случай вращающейся системы
- •Лекция 12 теорема об изменении кинетической энергии
- •Графический способ вычисления работы
- •Мощность
- •Примеры вычисления работы
- •Кинетическая энергия точки
- •Кинетическая энергия системы
- •Теорема об изменении кинетической энергии системы
- •Система с идеальными связями
- •Вычисление работы сил, приложенных к вращающемуся телу
- •Лекция 13 принцип даламбера
- •Приведение сил инерции твердого тела
- •Динамические реакции, действующие на ось вращающегося тела
- •Лекция 14 принцип возможных перемещений. Принцип даламбера – лагранжа (общее уравнение динамики)
- •Классификация связей
- •Возможные (виртуальные) перемещения
- •Число степеней свободы
- •Идеальные связи
- •Принцип возможных перемещений
- •Равновесие рычага (золотое правило механики)
- •Принцип Даламбера–Лагранжа (общее уравнение динамики)
- •Лекция 15 уравнения лагранжа -го рода
- •Обобщенные силы
- •Примеры вычисления обобщенной силы
- •Условие равновесия системы в обобщенных силах
- •Уравнения Лагранжа
- •Лекция 16 элементарная теория удара твердых тел
- •Основное уравнение теории удара
- •Общие теоремы теории удара
- •Коэффициент восстановления при ударе
- •Экспериментальное определение коэффициента восстановления
- •Прямой центральный удар двух тел (удар шаров)
- •Рекомендуемая литература
- •Содержание
- •Конспект лекций по теоретической механике
Дифференциальные уравнения в проекциях на оси естественного трехгранника
Для получения уравнений
движения материальной точки на плоскости
спроецируем основное уравнение динамики
на оси естественного трехгранника ,
n, b. Зная, что
,
,
получим
,
,
.
Пример. Движение материальной точки массой m с некоторого момента времени происходит по окружности радиусом r согласно уравнению S = b + 2r·ln·t (b = const). Определить модуль равнодействующей силы, приложенной к точке, как функцию времени t.
Решение:
;
.
Следовательно,
.
П
ример.
Самолет в период взлета движется
поступательно и прямолинейно
с постоянным ускорением а, образующим
с горизонтом угол .
Определить модуль этого ускорения, если
известно, что нить ОМ математического
маятника, находящегося на самолете,
отклонена от вертикали на угол .
Каково натяжение нити, если масса
маятника равна m?
Решение:
.
Проецируя на оси x и y, получим:
x: – mа sin = P – T cos , (1)
y: mа cos = T sin . (2)
Умножив первое уравнение на cos , а второе – на sin , сложив их, получим:
0 = P cos – T cos sin + T sin cos ,
откуда
.
После подстановки полученного значения силы Т в уравнение (2) получим:
.
Алгоритм решения основной задачи динамики
1. Составить дифференциальные уравнения движения. Для этого необходимо:
а) выбрать координатные оси, поместив их начало в начальном положении точки (если движение прямолинейное, то одну из координатных осей следует проводить вдоль линии движения точки);
б) изобразить движущуюся точку в произвольный момент времени t и показать на рисунке все действующие на нее силы, в том числе и реакции связей (если они есть);
в) найти сумму проекций всех сил на выбранные оси и подставить в уравнения движения.
2. Проинтегрировать полученные уравнения.
3. Установить начальные условия движения точки М и по ним определить константы интегрирования.
4. Из полученных уравнений определить искомые величины.
Пример. Груз массой
m сброшен без начальной скорости с
самолета, движущегося горизонтально
со скоростью V0. Определить
уравнение движения груза, если при его
движении действует сила сопротивления
,
где k – положительный коэффициент.
Решение:
Разделяем переменные, вводя следующую замену:
.
Интегрируя, получим:
Начальные условия:
при
Тогда
.
Интегрируем еще раз:
Начальные условия: t
= 0; x = 0; y = 0, тогда
Таким образом, находим искомые уравнения:
Лекция 9 динамика механической системы
Механическая система. Масса системы. Центр масс и его координаты. Теорема о движении центра масс. Свойства внутренних и внешних сил. Дифференциальные уравнения движения центра масс. Осевые моменты инерции тела
М
еханической
системой называют систему материальных
точек. Представим себе механическую
систему
и обозначим координаты i-й
точки через xi, yi,
zi.
Геометрическая точка
С, определяемая координатами:
(1)
где M = mi – масса всей системы называется центром инерции или центром масс системы. Умножив числитель и знаменатель в этих формулах на ускорение свободного падения g, получим выражения:
где Р – вес системы.
Очевидно, что центр инерции (ЦИ) совпадает с центром тяжести (ЦТ) системы. Понятие ЦИ гораздо шире, чем понятие ЦТ, т.к. ЦТ существует только, когда система находится в поле сил гравитации, а существование ЦИ не зависит от действия на систему каких-либо сил.
Положение
центра инерции может быть также определено
значением радиуса-вектора, проведенного
в центр инерции из начала координатных
осей. Обозначим радиус-векторы точек
системы
через
,
тогда
. (2)
Это векторное равенство равносильно предыдущим трем, т.к., проецируя обе части равенства (2) на координатные оси, получим равенство (1).