
- •Введение
- •Глава 7. Стандартизация в компьютерной графике 189
- •Глава 8. Форматы графических файлов 216
- •Глава 9. Технические средства кг (оборудование кг) 265
- •Г л а в а 1. Основные понятия
- •Разновидности компьютерной графики
- •1.2. Принципы организации графических программ
- •Г л а в а 2. Растровая графика. Базовые растровые алгоритмы
- •2.1. Растровые изображения и их основные характеристики
- •Разрешающая способность в зависимости от расстояния
- •2.2. Вывод изображений на растровые устройства
- •2.3. Методы улучшения растровых изображений
- •2.21. Диагональное расположение ячеек 5x5
- •2.4. Базовые растровые алгоритмы
- •Характеристики шейдерных возможностей видеоадаптеров
- •2.5. Инструменты растровых графических пакетов
- •2.6. Преимущества и недостатки растровой графики
- •Г л а в а 3. Ве кторная графика
- •3.1. Средства создания векторных изображений
- •3.2. Сравнение механизмов формирования изображений в растровой и векторной графике
- •3.3. Структура векторной иллюстрации
- •3.4. Математические основы векторной графики
- •3.5. Элементы (объекты) векторной графики
- •3.6. Достоинства и недостатки векторной графики
- •Г л а в а 4. Фрактальная графика
- •4.1. Математика фракталов. Алгоритмы фрактального сжатия изображений
- •4.2 Обзор основных фрактальных программ
- •Г л а в а 5. Цветовые модели компьютерной графики
- •5.1. Элементы цвета
- •5.1.1 Свет и цвет
- •5.1.2. Физическая природа света и цвета
- •5.1.3. Излученный и отраженный свет
- •5.1.4. Яркостная и цветовая информация
- •5.1.5. Цвет и окраска
- •5.2. Характеристики источника света
- •5.2.1. Стандартные источники
- •5.2.2 Особенности восприятия цвета человеком
- •5.3. Цветовой и динамический диапазоны
- •5.4. Типы цветовых моделей
- •5.4.1. Аддитивные цветовые модели
- •5.4.2. Субтрактивные цветовые модели
- •5.4.3. Перцепционные цветовые модели
- •5.4.4. Системы соответствия цветов и палитры
- •5.4.5. Триадные и плашечные цвета
- •5.4.6. Цветовые режимы
- •Г л а в а 6. Реалистическое представление сцен
- •6.1 Закрашивание поверхностей
- •6.1.1. Модели отражения света
- •6.1.2. Вычисление нормалей и углов отражения
- •6.2 Метод Гуро
- •6.3 Метод Фонга
- •6.4. Имитация микрорельефа
- •6.6. Пример имитации микрорельефа методом dot3 Bump Mapping
- •6.5 Трассировка лучей
- •6.6 Анимация
- •Глава 7. Стандартизация в компьютерной графике
- •7.2 Международная деятельность по стандартизации в машинной графике
- •7.3 Классификация стандартов
- •7.4 Графические протоколы
- •7.4.1 Аппаратно-зависимые графические протоколы
- •7.4.2 Языки описания страниц
- •7.4.3 Аппаратно-независимые графические протоколы
- •7.4.4 Проблемно-ориентированные протоколы
- •7.4.5 Растровые графические файлы
- •Глава 8. Форматы графических файлов
- •8.1 Векторные форматы
- •8.2 Растровые форматы
- •8.3 Методы сжатия графических данных
- •8.5. Форматы мультимедиа
- •8.6. Преобразование файлов из одного формата в другой
- •Глава 9. Технические средства кг (оборудование кг)
- •9.1 Видеоадаптеры
- •9.2 Манипуляторы
- •9.3 Оборудование мультимедиа
- •9.4 Мониторы
- •9.5 Видеобластеры
- •9.6 Периферия
- •9.6.1 Принтеры
- •9.6.2 Имиджсеттеры
- •9.6.3 Плоттеры
- •9.7 Модемы
- •9.8 Звуковые карты
- •9.9 Сканеры
- •Планшетные сканеры
- •9.10. Цифровые фотоаппараты и фотокамеры
- •Литература
2.21. Диагональное расположение ячеек 5x5
Диагональное расположение можно получить, если сдвигать четные строки ячеек. А для того чтобы получить диагональную структуру растра, подобную той, что используется для печати газет, можно использовать квадратное расположение ячеек другого типа (рис. 2.22).
Рис. 2.22. Диагональная структура - ячейки другого типа
Для всех приведенных выше примеров дизеринга ячейки образуют точки переменного размера с постоянным шагом. Однако часто используется другой подход - переменная плотность расположения точек постоянного размера. Такой способ получил название частотной модуляции (ЧМ) (рис. 2.23).
Рис. 2.23. ЧМ-ячейки 6x6
Положительная черта способа ЧМ - меньшая заметность структуры растра. Однако его использование усложнено в случае, когда размер пикселов больше, чем шаг. Начиная с определенной плотности, пикселы смыкаются. Кроме того, на дискретном растре невозможно обеспечить плавное изменение плотности (частоты), в особенности для ячеек небольшого размера.
Для изображений, созданных методом ЧМ-дизеринга, растрирование менее заметно (рис. 2.24).
Рис. 2.24. Диагональное расположение ЧМ-ячеек 5x5
Общим недостатком методов, использующих регулярное расположение одинаковых ячеек, является то, что всегда образуется текстура, появляется муар, лишние контуры. Одной из важных задач исследований в этой области считалась разработка таких вариантов ячеек, которые обуславливают наименее заметную растровую структуру (кроме тех случаев, когда наоборот, такую структуру нужно подчеркнуть для создания изображения в стиле гравюры).
Другой разновидностью дизеринга являются методы, в которых вообще не используются ячейки. Одним из популярнейших методов дизеринга в настоящее время является "'error diffusion" метод Флойда-Стейнберга. Он обеспечивает высокое качество изображений и часто используется в драйверах принтеров и графических редакторах (рис. 2.25).
Рис. 2.25. Дизеринг методом «error-diiffusion» Флойда-Стейнберга
Рассмотрим алгоритм Флойда-Стейнберга. При обработке первой строки растра для первого пиксела цвет (С) заменяется на ближайший из возможных (X). Например, пиксел серого цвета заменяется соответствующим черным или белым. Для этого пиксела вычисляется ошибка Ε = С - Х. Эта ошибка в пропорции (7/16, 5/16, 3/16, 1/16) распределяется по соседним пикселам (отсюда и название метода - "error diffusion "). При обработке следующего пиксела рассматривается уже сумма его собственного цвета плюс значение ошибки, которое дошло к этому пикселу. Как распространяется ошибка - это зависит от направления сканирования строки (рис. 2.26).
Рис. 2.26. Добавление частей ошибки Направления сканирования
к соседним символам
Для уменьшения вероятности образования регулярных узоров рекомендуется соседние строки сканировать в противоположных направлениях - "змейкой".
Этот метод был предложен для градаций серого, однако, он с успехом используется, например, для преобразования 24-битных изображений в 256-цветные.