
- •Введение
- •Глава 7. Стандартизация в компьютерной графике 189
- •Глава 8. Форматы графических файлов 216
- •Глава 9. Технические средства кг (оборудование кг) 265
- •Г л а в а 1. Основные понятия
- •Разновидности компьютерной графики
- •1.2. Принципы организации графических программ
- •Г л а в а 2. Растровая графика. Базовые растровые алгоритмы
- •2.1. Растровые изображения и их основные характеристики
- •Разрешающая способность в зависимости от расстояния
- •2.2. Вывод изображений на растровые устройства
- •2.3. Методы улучшения растровых изображений
- •2.21. Диагональное расположение ячеек 5x5
- •2.4. Базовые растровые алгоритмы
- •Характеристики шейдерных возможностей видеоадаптеров
- •2.5. Инструменты растровых графических пакетов
- •2.6. Преимущества и недостатки растровой графики
- •Г л а в а 3. Ве кторная графика
- •3.1. Средства создания векторных изображений
- •3.2. Сравнение механизмов формирования изображений в растровой и векторной графике
- •3.3. Структура векторной иллюстрации
- •3.4. Математические основы векторной графики
- •3.5. Элементы (объекты) векторной графики
- •3.6. Достоинства и недостатки векторной графики
- •Г л а в а 4. Фрактальная графика
- •4.1. Математика фракталов. Алгоритмы фрактального сжатия изображений
- •4.2 Обзор основных фрактальных программ
- •Г л а в а 5. Цветовые модели компьютерной графики
- •5.1. Элементы цвета
- •5.1.1 Свет и цвет
- •5.1.2. Физическая природа света и цвета
- •5.1.3. Излученный и отраженный свет
- •5.1.4. Яркостная и цветовая информация
- •5.1.5. Цвет и окраска
- •5.2. Характеристики источника света
- •5.2.1. Стандартные источники
- •5.2.2 Особенности восприятия цвета человеком
- •5.3. Цветовой и динамический диапазоны
- •5.4. Типы цветовых моделей
- •5.4.1. Аддитивные цветовые модели
- •5.4.2. Субтрактивные цветовые модели
- •5.4.3. Перцепционные цветовые модели
- •5.4.4. Системы соответствия цветов и палитры
- •5.4.5. Триадные и плашечные цвета
- •5.4.6. Цветовые режимы
- •Г л а в а 6. Реалистическое представление сцен
- •6.1 Закрашивание поверхностей
- •6.1.1. Модели отражения света
- •6.1.2. Вычисление нормалей и углов отражения
- •6.2 Метод Гуро
- •6.3 Метод Фонга
- •6.4. Имитация микрорельефа
- •6.6. Пример имитации микрорельефа методом dot3 Bump Mapping
- •6.5 Трассировка лучей
- •6.6 Анимация
- •Глава 7. Стандартизация в компьютерной графике
- •7.2 Международная деятельность по стандартизации в машинной графике
- •7.3 Классификация стандартов
- •7.4 Графические протоколы
- •7.4.1 Аппаратно-зависимые графические протоколы
- •7.4.2 Языки описания страниц
- •7.4.3 Аппаратно-независимые графические протоколы
- •7.4.4 Проблемно-ориентированные протоколы
- •7.4.5 Растровые графические файлы
- •Глава 8. Форматы графических файлов
- •8.1 Векторные форматы
- •8.2 Растровые форматы
- •8.3 Методы сжатия графических данных
- •8.5. Форматы мультимедиа
- •8.6. Преобразование файлов из одного формата в другой
- •Глава 9. Технические средства кг (оборудование кг)
- •9.1 Видеоадаптеры
- •9.2 Манипуляторы
- •9.3 Оборудование мультимедиа
- •9.4 Мониторы
- •9.5 Видеобластеры
- •9.6 Периферия
- •9.6.1 Принтеры
- •9.6.2 Имиджсеттеры
- •9.6.3 Плоттеры
- •9.7 Модемы
- •9.8 Звуковые карты
- •9.9 Сканеры
- •Планшетные сканеры
- •9.10. Цифровые фотоаппараты и фотокамеры
- •Литература
Разрешающая способность в зависимости от расстояния
Расстояние R, мм |
Размер dP, мм |
Разрешающая способность dpi |
500 |
0. 14 |
181 |
300 |
0. 09 |
282 |
Глаз человека с нормальным зрением способен различать объекты с угловым размером около одной минуты. Если расстояние до объекта равно R, то можно приблизительно оценить этот размер (dP), как длину дуги, равную R ∙ 𝛼 (рис. 2.5). Можно предположить, что человек различает дискретность растра (шаг) также соответственно этому минимально различимому размеру. Иначе говоря, если расстояние между отдельными тачками (пикселами) меньше чем dP, то эти точки уже не воспринимаются как отдельные точки. Тогда можно оценить минимальную разрешающую способность растрового изображения, которое человеком уже не воспринимается как растровое, следующей величиной; dpi = 25, 4 / dP [мм].
Несколько значений dpi для разных R приведено в табл. 2.1.
Если считать расстояние, с которого человек обычно разглядывает печатные документы, равным 300 мм, то можно оценить минимальную разрешающую способность, при которой уже не заметны отдельные пикселы, как примерно 300 dpi (приблизительно 0.085 мм). Лазерные черно-белые принтеры полностью удовлетворяют такому требованию.
Дисплеи обычно рекомендуется разглядывать с расстояния не ближе 0.5 м. В соответствии с приведенной выше оценкой минимальной разрешающей способности расстоянию 0.5 м соответствуют приблизительно 200 dpi, В современных дисплеях разрешающая способность составляет 100-120 dpi - это плохо; например, дисплей размером 15" по диагонали должен обеспечивать не 1024x768 пикселов, а вдвое больше. Но на современном уровне развития техники это пока что невозможно.
2.2. Вывод изображений на растровые устройства
Для иллюстрации работы реальных растровых устройств рассмотрим результаты отображения рисунка-образца на разнообразных графических устройствах. В качестве тестового образца выбран черно-белый рисунок, который состоит из текста и простейшей графики - текст «Строчка текста».
Графика - векторный рисунок из линий минимально возможной толщины. Тестовый образец изготовлен и выведен на устройства с помощью редактора Word 2007.
Почему именно такой образец? Для того чтобы оценить погрешности отображения, тест следует подобрать так, чтобы устройства работали в режиме близком к предельно допустимому. Тогда и следует оценивать их возможности. Однако задача усложняется тем, что проверяются устройства разного класса. Оказалось, что некоторые устройства не в состоянии удовлетворительно отобразить даже такой простой образец, а некоторые устройства продемонстрировали значительный запас точности - для них нужны другие тесты.
После вывода образца на графическом устройстве, соответствующее растровое изображение оцифровывалось сканером с оптическим разрешением 600x600 dpi (2400x2400 в режиме интерполяции). Также использовалась фотокамера в режиме макросъемки.
Безусловно, погрешность сканера важна для полученных на устройствах изображений, обладающих сопоставимым, а также более высоким разрешением. Однако приведенные здесь результаты не следует рассматривать как точные измерения. Здесь ставились иные цели - проиллюстрировать геометрические свойства растров (расположение, форму и размеры отдельных пикселов) для устройств различного типа, показать наиболее характерные особенности отображения.
Для сравнения были выбраны графические устройства, которые можно встретить практически в любом современном офисе - это дисплеи и принтеры.
Торговые марки устройств не приводятся. Наше изучение особенностей их работы не следует рассматривать как тестирование или рекламу.
Первый пример - изображение на экране цветного монитора, на электронно-лучевой трубке (рис. 2.6). Следует заметить, что в данном случае изображение черно-белого образца на самом деле - цветное, в книге оно напечатано в градациях серого.
На рис. 2.6 показано увеличенное изображение фрагмента. Здесь уже четко видно "триадную" структуру растра, присущую цветному кинескопу.
Рис. 2.6. Растр электронно-лучевой трубки - триады RGB
Растровый характер изображения монитора на жидких кристаллах (рис. 2.7) выражен значительно четче, чем для монитора на электронно-лучевой трубке. Четкость отдельных пикселов обуславливает заметный ступенчатый эффект наклонных линий.
Рис. 2.7. Монитор на жидких кристаллах. Видеорежим
Растр монитора на жидких кристаллах 1024 на 768,
экран ноутбука 14”
Качество печати для матричных принтеров определяется погрешностями механики и износом красящей ленты (рис. 2.8). Здесь красящая лента выработала свой ресурс наполовину, поэтому изображение получилось как бы "в градациях серого цвета". Кроме того, изображение имеет полутоновый характер и из-за того, что чернота уменьшается на краях впадин оттиска игл. Вообще говоря, матричные принтеры могут печатать намного лучше. Даже испытуемый принтер может печатать с разрешением 240 на 216 dpi. Однако драйвер для Windows позволяет установить только 240x144 dpi, а качество практически не улучшается по сравнению с 120x144 (вероятно, из-за износа механики).
Рис. 2.8. Матричный 9-игольчатый принтер Увеличенный фрагмент
120 на 144 dpi
Лазерные принтеры, как правило, безупречно отрабатывают свою паспортную разрешающую способность (рис. 2.9). Немаловажным является то, что качество печати стабильно и практически не зависит от качества бумаги. Принтеры данного типа вне конкуренции (по крайней мере, в настоящее время) по быстродействию и качеству черно-белой печати среди других типов принтеров. Более дорогие модели лазерных принтеров обладают в несколько раз большей паспортной разрешающей способностью, при этом качество печати, как правило, возрастает соответственно. Оптического разрешения сканера в 600 dpi (2400 dpi интерполяция) уже недостаточно, чтобы точно отобразить фрагмент растра в мельчайших деталях.
Рис. 2.9. Лазерный черно-белый Фрагмент изображения
принтер, 600 dpi
Качество печати струйных принтеров достаточно редко соответствует заявленной паспортной разрешающей способности (рис. 2.10). Данная модель, возможно, - исключение из общего правила. В черно-белом режиме здесь фактически продемонстрирована точность печати на уровне 600 dpi лазерного принтера. Многие другие струйные принтеры с рекламируемым разрешением более тысячи dpi работают еще хуже. И это при печати на специальной бумаге.
Достоинством струйных принтеров является то, что это относительно недорогое устройство для цветной печати. С приемлемым качеством для цветной фотографии работают струйные фотопринтеры. Технология струйной печати также используется и в достаточно популярных крупноформатных (АЗ-А1) цветных растровых принтерах.
Рис. 2.10. Струйный цветной Фрагмент изображения
фотопринтер, черно-белый режим,
1440 dpi, печать на специальной
фотобумаге