
- •Введение
- •Глава 7. Стандартизация в компьютерной графике 189
- •Глава 8. Форматы графических файлов 216
- •Глава 9. Технические средства кг (оборудование кг) 265
- •Г л а в а 1. Основные понятия
- •Разновидности компьютерной графики
- •1.2. Принципы организации графических программ
- •Г л а в а 2. Растровая графика. Базовые растровые алгоритмы
- •2.1. Растровые изображения и их основные характеристики
- •Разрешающая способность в зависимости от расстояния
- •2.2. Вывод изображений на растровые устройства
- •2.3. Методы улучшения растровых изображений
- •2.21. Диагональное расположение ячеек 5x5
- •2.4. Базовые растровые алгоритмы
- •Характеристики шейдерных возможностей видеоадаптеров
- •2.5. Инструменты растровых графических пакетов
- •2.6. Преимущества и недостатки растровой графики
- •Г л а в а 3. Ве кторная графика
- •3.1. Средства создания векторных изображений
- •3.2. Сравнение механизмов формирования изображений в растровой и векторной графике
- •3.3. Структура векторной иллюстрации
- •3.4. Математические основы векторной графики
- •3.5. Элементы (объекты) векторной графики
- •3.6. Достоинства и недостатки векторной графики
- •Г л а в а 4. Фрактальная графика
- •4.1. Математика фракталов. Алгоритмы фрактального сжатия изображений
- •4.2 Обзор основных фрактальных программ
- •Г л а в а 5. Цветовые модели компьютерной графики
- •5.1. Элементы цвета
- •5.1.1 Свет и цвет
- •5.1.2. Физическая природа света и цвета
- •5.1.3. Излученный и отраженный свет
- •5.1.4. Яркостная и цветовая информация
- •5.1.5. Цвет и окраска
- •5.2. Характеристики источника света
- •5.2.1. Стандартные источники
- •5.2.2 Особенности восприятия цвета человеком
- •5.3. Цветовой и динамический диапазоны
- •5.4. Типы цветовых моделей
- •5.4.1. Аддитивные цветовые модели
- •5.4.2. Субтрактивные цветовые модели
- •5.4.3. Перцепционные цветовые модели
- •5.4.4. Системы соответствия цветов и палитры
- •5.4.5. Триадные и плашечные цвета
- •5.4.6. Цветовые режимы
- •Г л а в а 6. Реалистическое представление сцен
- •6.1 Закрашивание поверхностей
- •6.1.1. Модели отражения света
- •6.1.2. Вычисление нормалей и углов отражения
- •6.2 Метод Гуро
- •6.3 Метод Фонга
- •6.4. Имитация микрорельефа
- •6.6. Пример имитации микрорельефа методом dot3 Bump Mapping
- •6.5 Трассировка лучей
- •6.6 Анимация
- •Глава 7. Стандартизация в компьютерной графике
- •7.2 Международная деятельность по стандартизации в машинной графике
- •7.3 Классификация стандартов
- •7.4 Графические протоколы
- •7.4.1 Аппаратно-зависимые графические протоколы
- •7.4.2 Языки описания страниц
- •7.4.3 Аппаратно-независимые графические протоколы
- •7.4.4 Проблемно-ориентированные протоколы
- •7.4.5 Растровые графические файлы
- •Глава 8. Форматы графических файлов
- •8.1 Векторные форматы
- •8.2 Растровые форматы
- •8.3 Методы сжатия графических данных
- •8.5. Форматы мультимедиа
- •8.6. Преобразование файлов из одного формата в другой
- •Глава 9. Технические средства кг (оборудование кг)
- •9.1 Видеоадаптеры
- •9.2 Манипуляторы
- •9.3 Оборудование мультимедиа
- •9.4 Мониторы
- •9.5 Видеобластеры
- •9.6 Периферия
- •9.6.1 Принтеры
- •9.6.2 Имиджсеттеры
- •9.6.3 Плоттеры
- •9.7 Модемы
- •9.8 Звуковые карты
- •9.9 Сканеры
- •Планшетные сканеры
- •9.10. Цифровые фотоаппараты и фотокамеры
- •Литература
9.3 Оборудование мультимедиа
Мультимедиа - это комплексное представление информации - вывод данных в текстовом, графическом, видео-, аудио- и мультипликационном видах.
Мультимедийный набор- это:
звуковая карта;
звуковые колонки;
микрофон;
CD-ROM;
кабели
|
|
|
|
Рис. 9.10. Оборудование для мультимедиа
И многое, многое другое:
чувствительный экран (touch-панель)
световое перо
контактный, акустический, лазерный щуп (перо)
считыватель-обработчик штрих-кодов
цифровая камера
dvd-проигрыватель
спутниковая плата
программируемая клавиатура
ультразвуковая мышка («Сова»)
Текст
Под текстом понимается любой набор символов из той или иной кодовой страницы. Текст использовался в компьютерах еще задолго до того, как появилось само слово «мультимедиа». Но и сейчас, и в будущем текст останется важным компонентом мультимедиа, так как он является простым, но чрезвычайно эффективным средством для представления и передачи информации.
Текст может быть представлен различными кодовыми страницами. Кодовая страница - это взаимно однозначное соответствие между изображением символа и его порядковым номером (кодом) в кодовой таблице.
Первоначально кодовые страницы состояли 128 символов, в число которых входили только строчные и прописные латинские символы, цифры, управляющие символы и символы псевдографики. По мере распространения персональных компьютеров стали появлятся кодовые страницы с символами национальных алфавитов (в том числе и с символами кириллицы). Разные кодовые таблицы имеют свои названия. Старейшая кодовая страница с русскими символами - KOI8-R, которая используется в операционных системах Unix. В ОС DOS использовалась кодировка cp866; в ОС Windows используется кодировка Windows-1251. Последняя из разрабатываемых кодовых страниц - Unicode (UTF-8), которая содержит 64 тыс. символов всех национальных алфавитов, математические, химические и другие знаки; Unicode в той или иной степени поддерживется многими современными операционными системами.
Графика
По принципу представления графика далится на растровую и векторную. Изображение в растровой графике строится как набор элементарных точек, раскрашенных тем или иным цветом. Векторная графика строится по правилам векторной алгебры из точек, линий, поверхностей.
Растровая графика характеризуется следующими параметрами:
размер картинки (измеряется в пикселах, миллиметрах, дюймах и т. д.);
разрешение - количество точек на единицу (обычно дюйм);
количество передаваемых цветов или глубина цвета. Чем большее количество информации отводится для запоминания каждой отдельной точки, тем красочнее картинка и больше размер файла. Стандартные значения:
2 цвета (1 бит на точку);
16 цветов (4 бита на точку);
256 цветов (8 бит на точку);
16777216 цветов (24 бита на точку);
4294967296 цветов (32 бита на точку);
формат записи (BMP, PCX, GIF, TIF, JPG, TGA и др.) - способы хранения графической информации с элементами (или без них) сжатия.
Векторную графика подразделяется на двумерную и трехмерную. Она имеет характеристики аналогичные математическим, а именно: координаты (декартовы, сферические, цилиндрические и др.), системы отсчета, размеры... Векторная графика может быть преобразована в растровую путем получения плоского изображения одной из проекций. Обратное преобразование невозможно или крайне сложно.
Видео
Видео-изображение - это последовательность растровых картинок, сменяющихся с большой скоростью аналогично принципу, используемому в кинематографе или телевидении. С помощью специальных аппаратных средств обычные видеозаписи переводятся в компьютерный формат. Это дает возможность производить нелинейный монтаж и применять к изображениям различные компьютерные эффекты. После этого видео снова может быть выведено на пленку.
Компьютерное видео характеризуется следующими параметрами:
количество кадров в секунду (15, 24, 25...);
поток данных (килобайт/с);
формат файла (avi, mov...);
способ сжатия (Microsoft Video for Windows, MPEG, MPEG-I, MPEG-2, Moution JPEG).
Видео кодируется двумя основными способами: сжимается каждый кадр (картинка) в отдельности и составляется видео фильм либо создаются опорные кадры, а затем записываются изменения между этими опорными кадрами.
Компьютерное видео создается редакторами 3D анимации, монтажными пакетами, оцифровыванием видео-изображения.
Анимация
Отличается от видео тем, что получается чисто компьютерным способом. Может быть записана в тех же форматах, что и видео, и выведена на видеопленку. Анимация делится на двумерную и трехмерную. Анимация создается редакторами двумерной и трехмерной графики, сканированием и оцифровыванием изображения.
Цифровой звук
Аналоговый звуковой сигнал непрерывен по амплитуде и времени. Простейшая звуковая волна представляется обычно напряжением или током, изменяющимся во времени по синусоидальному закону. Амплитуда соответствует громкости звука, частота - высоте звука. Для представления в цифровом виде аналоговый сигнал перекодируют, запоминая параметры звука через определенные промежутки времени в структуре данных определенного размера.
Качество записи характеризуется: частотой дискретизации (Гц), размером структуры данных (бит), количеством каналов (стерео, моно, квадро), обобщающим параметром - потоком (бит/с).
Наиболее часто звук записывается в формате PCM (Pulse Code Modulation). Такие звуковые файлы еще называют WAV-файлами. Основные частоты дискретизации: 8, 11, 22, 44 кГц, основные размеры: 8, 16, 32, 64 бит. Сочетая эти параметры различным образом, можно широко варьировать как качество звука, так и размеры получаемых файлов.
Для воспроизведения цифрового звука применяют обратное преобразование в аналоговый сигнал из цифрового или синтез аналогового сигнала на основе цифровой записи. Для уменьшения размера звукового файла используют специальные форматы записи звука (DPCM, ADPCM) с дополнительной компрессией. В последнее время огромную популярность получил звук в формате MP3 (MPEG 1 Layer 3). Это схема сильного сжатия аудиоинформации с потерями качества звучания. Популярность этого формата объясняется тем, что при относительно высоком качестве звучания размер звукового фрагмента для наиболее часто используемого потока 128 килобит/с на порядок ниже исходного звукового фрагмента. Однако качество Audio-CD при записи в MP3 достигается на гораздо более высоких потоках, и лишь плохая воспроизводящая аппаратура не позволяет заметить артефактов MP3 на потоках от 128 килобит/с и ниже. Основная идея, на которой основана данная методика сжатия - отказ от кодирования тонких деталей звучания, лежащих вне пределов возможностей человеческого слуха. В общем случае объем и степень ощутимости потерь определяются, с одной стороны, потоком, а с другой - психоакyстической моделью возможностей слуха, использованной в каждом конкретном кодере.
Запись мелодий в формате MIDI
Для записи звучания инструментальных композиций используется формат MIDI, позволяющий описывать звучание того или иного инструмента с помощью нотной грамоты и заранее заданных характеристик этого инструмента. Плюсом является то, что выходной файл получается небольшим: десятки, редко - сотни килобайт. Большой недостаток в использовании этой методики заключается в том, что нигде заранее не было оговорено, как должен звучать, к примеру, орган или клавесин. Поэтому производители музыкальных плат настраивали звучание того или иного инструмента так, как считали нужным. Поэтому одна и та же MIDI-мелодия может звучать абсолютно по-разному на звуковых платах разных производителей.