
- •Введение
- •Глава 7. Стандартизация в компьютерной графике 189
- •Глава 8. Форматы графических файлов 216
- •Глава 9. Технические средства кг (оборудование кг) 265
- •Г л а в а 1. Основные понятия
- •Разновидности компьютерной графики
- •1.2. Принципы организации графических программ
- •Г л а в а 2. Растровая графика. Базовые растровые алгоритмы
- •2.1. Растровые изображения и их основные характеристики
- •Разрешающая способность в зависимости от расстояния
- •2.2. Вывод изображений на растровые устройства
- •2.3. Методы улучшения растровых изображений
- •2.21. Диагональное расположение ячеек 5x5
- •2.4. Базовые растровые алгоритмы
- •Характеристики шейдерных возможностей видеоадаптеров
- •2.5. Инструменты растровых графических пакетов
- •2.6. Преимущества и недостатки растровой графики
- •Г л а в а 3. Ве кторная графика
- •3.1. Средства создания векторных изображений
- •3.2. Сравнение механизмов формирования изображений в растровой и векторной графике
- •3.3. Структура векторной иллюстрации
- •3.4. Математические основы векторной графики
- •3.5. Элементы (объекты) векторной графики
- •3.6. Достоинства и недостатки векторной графики
- •Г л а в а 4. Фрактальная графика
- •4.1. Математика фракталов. Алгоритмы фрактального сжатия изображений
- •4.2 Обзор основных фрактальных программ
- •Г л а в а 5. Цветовые модели компьютерной графики
- •5.1. Элементы цвета
- •5.1.1 Свет и цвет
- •5.1.2. Физическая природа света и цвета
- •5.1.3. Излученный и отраженный свет
- •5.1.4. Яркостная и цветовая информация
- •5.1.5. Цвет и окраска
- •5.2. Характеристики источника света
- •5.2.1. Стандартные источники
- •5.2.2 Особенности восприятия цвета человеком
- •5.3. Цветовой и динамический диапазоны
- •5.4. Типы цветовых моделей
- •5.4.1. Аддитивные цветовые модели
- •5.4.2. Субтрактивные цветовые модели
- •5.4.3. Перцепционные цветовые модели
- •5.4.4. Системы соответствия цветов и палитры
- •5.4.5. Триадные и плашечные цвета
- •5.4.6. Цветовые режимы
- •Г л а в а 6. Реалистическое представление сцен
- •6.1 Закрашивание поверхностей
- •6.1.1. Модели отражения света
- •6.1.2. Вычисление нормалей и углов отражения
- •6.2 Метод Гуро
- •6.3 Метод Фонга
- •6.4. Имитация микрорельефа
- •6.6. Пример имитации микрорельефа методом dot3 Bump Mapping
- •6.5 Трассировка лучей
- •6.6 Анимация
- •Глава 7. Стандартизация в компьютерной графике
- •7.2 Международная деятельность по стандартизации в машинной графике
- •7.3 Классификация стандартов
- •7.4 Графические протоколы
- •7.4.1 Аппаратно-зависимые графические протоколы
- •7.4.2 Языки описания страниц
- •7.4.3 Аппаратно-независимые графические протоколы
- •7.4.4 Проблемно-ориентированные протоколы
- •7.4.5 Растровые графические файлы
- •Глава 8. Форматы графических файлов
- •8.1 Векторные форматы
- •8.2 Растровые форматы
- •8.3 Методы сжатия графических данных
- •8.5. Форматы мультимедиа
- •8.6. Преобразование файлов из одного формата в другой
- •Глава 9. Технические средства кг (оборудование кг)
- •9.1 Видеоадаптеры
- •9.2 Манипуляторы
- •9.3 Оборудование мультимедиа
- •9.4 Мониторы
- •9.5 Видеобластеры
- •9.6 Периферия
- •9.6.1 Принтеры
- •9.6.2 Имиджсеттеры
- •9.6.3 Плоттеры
- •9.7 Модемы
- •9.8 Звуковые карты
- •9.9 Сканеры
- •Планшетные сканеры
- •9.10. Цифровые фотоаппараты и фотокамеры
- •Литература
5.4.5. Триадные и плашечные цвета
Для печатания результатов работы, выполненной вами в графической программе на полиграфическом оборудовании, возможно использование одной из двух схем печати: плашечной или многослойной.
Плашечными (или простыми) цветами называются цвета, которые воспроизводятся
на бумаге готовыми смесовыми красками.
Каждый плашечный цвет репродуцируется с помощью отдельной печатной формы (плашки).
Многослойная печать основана на использовании триадных (иначе составных) цветов и включает в себя как минимум четыре процесса.
Триадные цвета воспроизводятся путем смешивания в разных пропорциях триадных красок (голубой, пурпурной, желтой), применяемых в стандартной четырехкрасочной печати.
В графических программах все цветовые модели работают именно с триадными цветами. Поэтому воспроизведение плашечного цвета на экране монитора с помощью, например, цветовой модели RGB приводит к аппроксимации плашечного цвета триадным цветом.
Плашечная схема печати применяется тогда, когда количество цветов в рисунке меньше четырех или когда отдельные цвета не могут быть получены путем смешивания красок (например, неоновые или имитирующие металлизированную поверхность).
В случае необходимости прецизионного воспроизведения цвета или создания специальных цветовых эффектов возможны реализация плашечной печати с большим количеством цветов или совмещение плашечной и многослойной печати.
Некоторые плашечные цвета можно точно передать с помощью триадных красок, другие находятся за пределами цветового охвата CMYK. Например, пастельные, неоновые или металлизированные краски не имеют аналогов в цветовой системе CMYK, а оттенок зеленого цвета легко заменить его составным аналогом.
Различие между плашечными и триадными цветами напрямую связано с процессами взаимодействия света с чернилами, используемыми для создания этих красок.
Чернила для плашечной печати непрозрачны, поэтому они отражают свет поверхностным слоем. В результате для получения на бумаге, например, пурпурного цвета потребуется использование пурпурных чернил. Это позволяет, в свою очередь, добиваться очень ярких тонов и специальных эффектов типа металлизации и ирилизации (перелива оттенков).
Чернила для многослойной печати, наоборот, прозрачны. Поэтому свет отражается не их поверхностным слоем, а поверхностью материала, на который они нанесены. Это приводит к тому, что образование цвета происходит за счет удаления из спектра лишних компонентов путем поглощения их слоем краски. В результате для воспроизведения пурпурного цвета на поверхность страницы необходимо наложить два типа чернил - бирюзового и синего цветов. Они поглотят синюю и зеленую части спектра, оставив (отразив) для нашего глаза только пурпурную часть спектра.
5.4.6. Цветовые режимы
Цветовые режимы представляют собой практическую реализацию рассмотренных выше цветовых моделей. В большинстве графических программ только три цветовые модели - RGB, CMYK и Lab - имеют одноименные цветовые режимы. Вместе с тем в них широко представлены режимы с ограниченной цветовой палитрой.
Наиболее широким (и практически идентичным) охватом цветовых режимов характеризуются программы Adobe Photoshop и Corel PHOTO-PAINT.
Режим черно-белой графики
Художники и разработчики программного обеспечения иногда называют этот режим монохромной графикой, растровой графикой (bitmap art), или графикой с однобитовым разрешением.
Для отображения черно-белого изображения используются только два типа ячеек: черные и белые (рис. 5.20). Поэтому для запоминания каждого пикселя требуется только 1 бит памяти компьютера. Областям исходного изображения, имеющим промежуточные оттенки, назначаются черные или белые пиксели, поскольку других оттенков для этой модели не предусмотрено. В качестве аналога бинарного узла вы можете представить лампочку, которая может находиться только в одном из двух состояний: вкл или выкл. При такой кодировке цвет пикселя также может принимать только одно из двух состояний: черный или белый. Этот режим можно использовать для работы с черно-белыми изображениями, полученными сканированием черно-белых чертежей и гравюр, а также иногда при выводе цветных изображений на черно-белую печать.
Рис. 5.20. Интерпретация двоичной
1-битовой информации
Остановимся на назначении и особенностях организации каждого из типов монохромных изображений.
Line Art (Гравюра)
Этот вид монохромного черно-белого изображения характеризуется высоким контрастом изображения, что связано с отсутствием полутонов. При конвертировании в этот тип изображения все цветные пикселы, формирующие изображение, преобразуются только в черные и белые. В качестве критерия такого преобразования используется настраиваемый параметр Threshold (Порог). Цвета, яркость которых ниже установленного порогового значения, преобразуются в черный цвет. В противном случае происходит преобразование в белый цвет.
Методы, основанные на алгоритмах формирования случайных узоров
В современных графических программах для эмуляции оттенков серого широко используются алгоритмы, основу которых составляет генерация случайных узоров на базе наборов черных и белых пикселов.
Ordered (Упорядоченный)
В отличие от рассмотренной выше группы методов в этом варианте для эмуляции оттенков серого используются фиксированные растровые узоры. Поэтому данный метод имеет достаточно высокое быстродействие.
Метод Cardinality-Distribution
Данный метод создает текстуроподобное изображение путем анализа и преобразования атрибутов каждого пиксела изображения.
Halftone (Полутон)
Такой способ реализации изображения базируется на специфике восприятия изображения человеческим глазом, для которого область изображения, заполненная крупными точками, ассоциируется с более темными тонами и, наоборот, область, заполненная точками меньшего размера, воспринимается как более светлая. Режим Halftone поддерживается большинством принтеров. Полутоновые изображения представляют собой однобитовые изображения с непрерывным тоном, которые реализуются с помощью конгломерата точек разного размера и формы. В полученном таким образом изображении оттенки серого имитируются точками разного размера, внесенными в специальный шаблон, форму которого можно выбрать из раскрывающегося списка Screen type (Тип растра).
Режим Grayscale (Градации серого)
Использование режима Grayscale (Градации серого) позволяет увеличить информационную емкость изображения за счет повышения цветового разрешения каждого пиксела. Поскольку в этом режиме на каждый пиксел выделяется до 8 бит, то требуется иная форма организации информации по сравнению с ранее рассмотренными однобитовыми монохромными режимами. Если, как уже отмечалось, режим Черно-белая графика может быть сравним с элементарной математикой, в которой основной элемент графического изображения - пиксел - может принимать только два состояния: включен и выключен, то режим Градации серого - это высшая математика, позволяющая оперировать с комбинацией до 256 оттенков, обеспечивая более высокое тоновое разрешение изображения. Это связано с тем, что устройства, использующие двоичную математику, сводят все многообразие явлений к комбинации вариантов, количество которых равно числу 2 в соответствующей степени. Для пиксела с 4-битовым разрешением число возможных вариантов составит 24, что соответствует 16 комбинациям. В случае 8-битового разрешения это число возрастет до 28, или 256 комбинаций. Именно такое количество оттенков может быть реализовано при сканировании изображения в режиме Оттенки серого большинством непрофессиональных сканеров. Растровые редакторы воспринимают полученное в этом режиме цифровое изображение в виде одноцветного (монохромного) канала, содержащего 256 различных уровней яркости.
С технической точки зрения монохромное изображение, содержащее гамму из 256 оттенков серого, перекрывает весь диапазон оттенков от черного до белого, создавая непрерывную для глаза шкалу. Поэтому для получения монохромного изображения, близкого к оригиналу, при сканировании изображения можно использовать режим
Градации серого
Последние версии профессиональных редакторов, включая Adobe Photoshop и Corel PHOTO-PAINT, наряду со стандартной 8-битовой глубиной цвета полутоновых изображений поддерживает 16-битовую глубину цвета, которая позволяет воспроизводить 65536 оттенков серого. Художественная ценность черно-белого изображения определяется композицией и световой контрастностью. Многие прекрасные цветные изображения плохо смотрятся при преобразовании их в черно-белые из-за одинаковой световой тональности разных цветов. Для получения хороших результатов в режиме Градации серого нужно использовать монохромный источник с высокой контрастностью.
Режим Duotone (Дуплекс)
Дуплекс – это 8-разрядный цветовой режим, использующий 256 оттенков не более четырех цветовых тонов.
Фактически дуплексную цветовую модель можно рассматривать как изображение в цветовой модели Grayscale, улучшенное с помощью дополнительных цветов (от одного до четырех). В дуплексном цветовом режиме изображение состоит из 256 оттенков одной (Monotone, тоновое), двух (Duotone, двухтоновый дуплекс), трех (Tritone, тритон) или четырех (Quadtone, квадртон) красок.
Двухтоновый вариант данной цветовой модели широко распространен в полиграфии. Здесь в качестве дуплекса используется модифицированное изображение в градациях серого, отпечатанное с помощью красок двух цветов - как правило, черного и акцентирующего цвета, хотя могут использоваться любые другие два цвета. В общем случае этот термин относится также к дуплексам с тремя и четырьмя красками. Использование двух красок вместо четырех значительно сокращает расходы на печать, обеспечивая вместе с тем широкий диапазон выбираемых оттенков. Дуплекс идеален для добавления акцентирующего цвета к фотографии или расширения тонального диапазона красителей.Этот режим можно использовать для того, чтобы придавать цветность черно-белым изображениям либо создавать интересные эффекты с помощью различных параметров тонирования.
Режим RGB Color
Данный режим часто называют RGB-цветом. Он наиболее удобен для редактирования изображений на экране компьютера, так как обеспечивает цветовое разрешение 24 бит/пиксел. Это позволяет использовать для реализации цветных цифровых изображений палитру из 16,7 млн цветов. На жаргоне программистов цветовую модель RGB называют естественным щеглом (true color), так как 16 млн цветов, доступных при такой глубине цвета, достаточно для представления всех различимых человеческим глазом оттенков.
Очевидно, что для источников изображения, имеющих ограниченную цветовую палитру, такое количество цветовых оттенков может оказаться избыточным.