
- •Введение
- •Глава 7. Стандартизация в компьютерной графике 189
- •Глава 8. Форматы графических файлов 216
- •Глава 9. Технические средства кг (оборудование кг) 265
- •Г л а в а 1. Основные понятия
- •Разновидности компьютерной графики
- •1.2. Принципы организации графических программ
- •Г л а в а 2. Растровая графика. Базовые растровые алгоритмы
- •2.1. Растровые изображения и их основные характеристики
- •Разрешающая способность в зависимости от расстояния
- •2.2. Вывод изображений на растровые устройства
- •2.3. Методы улучшения растровых изображений
- •2.21. Диагональное расположение ячеек 5x5
- •2.4. Базовые растровые алгоритмы
- •Характеристики шейдерных возможностей видеоадаптеров
- •2.5. Инструменты растровых графических пакетов
- •2.6. Преимущества и недостатки растровой графики
- •Г л а в а 3. Ве кторная графика
- •3.1. Средства создания векторных изображений
- •3.2. Сравнение механизмов формирования изображений в растровой и векторной графике
- •3.3. Структура векторной иллюстрации
- •3.4. Математические основы векторной графики
- •3.5. Элементы (объекты) векторной графики
- •3.6. Достоинства и недостатки векторной графики
- •Г л а в а 4. Фрактальная графика
- •4.1. Математика фракталов. Алгоритмы фрактального сжатия изображений
- •4.2 Обзор основных фрактальных программ
- •Г л а в а 5. Цветовые модели компьютерной графики
- •5.1. Элементы цвета
- •5.1.1 Свет и цвет
- •5.1.2. Физическая природа света и цвета
- •5.1.3. Излученный и отраженный свет
- •5.1.4. Яркостная и цветовая информация
- •5.1.5. Цвет и окраска
- •5.2. Характеристики источника света
- •5.2.1. Стандартные источники
- •5.2.2 Особенности восприятия цвета человеком
- •5.3. Цветовой и динамический диапазоны
- •5.4. Типы цветовых моделей
- •5.4.1. Аддитивные цветовые модели
- •5.4.2. Субтрактивные цветовые модели
- •5.4.3. Перцепционные цветовые модели
- •5.4.4. Системы соответствия цветов и палитры
- •5.4.5. Триадные и плашечные цвета
- •5.4.6. Цветовые режимы
- •Г л а в а 6. Реалистическое представление сцен
- •6.1 Закрашивание поверхностей
- •6.1.1. Модели отражения света
- •6.1.2. Вычисление нормалей и углов отражения
- •6.2 Метод Гуро
- •6.3 Метод Фонга
- •6.4. Имитация микрорельефа
- •6.6. Пример имитации микрорельефа методом dot3 Bump Mapping
- •6.5 Трассировка лучей
- •6.6 Анимация
- •Глава 7. Стандартизация в компьютерной графике
- •7.2 Международная деятельность по стандартизации в машинной графике
- •7.3 Классификация стандартов
- •7.4 Графические протоколы
- •7.4.1 Аппаратно-зависимые графические протоколы
- •7.4.2 Языки описания страниц
- •7.4.3 Аппаратно-независимые графические протоколы
- •7.4.4 Проблемно-ориентированные протоколы
- •7.4.5 Растровые графические файлы
- •Глава 8. Форматы графических файлов
- •8.1 Векторные форматы
- •8.2 Растровые форматы
- •8.3 Методы сжатия графических данных
- •8.5. Форматы мультимедиа
- •8.6. Преобразование файлов из одного формата в другой
- •Глава 9. Технические средства кг (оборудование кг)
- •9.1 Видеоадаптеры
- •9.2 Манипуляторы
- •9.3 Оборудование мультимедиа
- •9.4 Мониторы
- •9.5 Видеобластеры
- •9.6 Периферия
- •9.6.1 Принтеры
- •9.6.2 Имиджсеттеры
- •9.6.3 Плоттеры
- •9.7 Модемы
- •9.8 Звуковые карты
- •9.9 Сканеры
- •Планшетные сканеры
- •9.10. Цифровые фотоаппараты и фотокамеры
- •Литература
5.2. Характеристики источника света
5.2.1. Стандартные источники
Для имитации различного освещения измерительные устройства используют стандартизованные источники излучения - D50, D65, D93, А, В, С, а также F2 или F8 (флюоресцентные лампы). Эти источники имеют определенные стандартизованные спектральные характеристики, установленные в 1931 г. международной комиссией по освещению (CIE):
• источник А - норма среднего искусственного света эквивалентна цветовой температуре 2854°К, что соответствует излучению лампы накаливания;
• источник В - норма прямого солнечного света с цветовой температурой, близкой к 4800°К;
• источник С - норма рассеянного дневного света с температурой около 6500°К;
• источник D65 имеет температуру, почти равную 6500°К (применяется во всем мире, кроме Германии, где стандартным считается D50 с цветовой температурой 5000°К).
Источники В и С в действительности получают из источника А путем изменения спектральной характеристики последнего с помощью соответствующего фильтра.
5.2.2 Особенности восприятия цвета человеком
Световые волны, излучаемые или отражаемые объектом, собираются хрусталиком и через стекловидное тело проецируются на сетчатку. Там они возбуждают определенные нервные клетки, физиологическое назначение которых состоит в распознавании световых волн. В результате возбуждения в нервных клетках возникает электрический сигнал, который по зрительному нерву поступает в зрительный центр мозга, где с помощью пока еще до конца не понятных механизмов и возникает зрительное восприятие цвета.
На самой сетчатке можно выделить две области, которые называют желтым пятном и слепым пятном. На слепом пятне нервные пути сетчатки переходят в зрительный нерв. Поскольку в атом месте нервных клеток нет, то свет, попадающий на слепое пятно, не обнаруживается. На желтом пятне имеет место обратная картина. Оно расположено по центру зрительной оси и содержит много зрительных клеток, чувствительных к цвету (колбочек; см. ниже). При хорошем освещении глаз обычно фокусирует падающий свет на желтом пятне. Наоборот, ночью сильной фокусировки приходится избегать, поскольку из-за низкой чувствительности колбочек зрительное восприятие значительно ослабляется.
Колбочки и палочки
За цветовое и яркостное восприятие человеческого глаза отвечают два различных типа нервных клеток (рецепторов), называемых соответственно колбочками и палочками.
Процесс функционирования палочек и колбочек не имеет принципиальных отличий. В обоих случаях происходит поглощение световых волн и по достижении определенного порога вырабатывается нервный импульс. При этом оба вида нервных клеток реагируют на интенсивность падающего света. В чем же тогда проявляется их различие?
Палочки «отвечают» за черно-белое зрение, поскольку способны регистрировать только суммарную энергию света. Этот тип рецепторов равномерно распределен по сетчатке глаза и обладает очень высокой чувствительностью, примерно в 1000 раз превышающей чувствительность колбочек. Именно благодаря им обеспечивается возможность распознавания предметов в условиях плохой освещенности («ночью все кошки серы»).
Колбочки предназначены для распознавания цветовой информации. В отличие от палочек имеются три сорта колбочек, каждая из которых реагирует на определенный диапазон длин волн. Из экспериментальных данных видно, что первый тип воспринимает световые волны с длинами волн в диапазоне 400-500 нм («синяя» составляющая спектра), второй - от 500 до 600 нм («зеленая» составляющая спектра) и третий - от 600 до 700 («красная» составляющая спектра). В зависимости от того, световые волны какой длины и интенсивности присутствуют в спектре, те или иные группы колбочек возбуждаются сильнее или слабее. Полученная с помощью зрительных рецепторов информация поступает в виде сигналов в мозг, который определяет, в каких соотношения возбуждены три вида колбочек, создавая на базе этого цветовое восприятие.
Таким образом, исходя из особенностей строения человеческого глаза можно сделать вывод, что цвет трехмерен по своей природе.
Принцип действия большинства технических устройств, предназначенных для обработки содержащейся в свете цветовой информации, также базируется на раздельном распознавании красной, зеленой и синей составляющих света.
Настало время разобраться с тем, как свойства палочек и колбочек влияют на чувствительность зрения к яркости света.
Рис. 5.6. Спектральная чувствительность
различных типов колбочек
Спектральная чувствительность глаза к яркости
Как можно увидеть из рис. 5.9, области чувствительности различных типов колбочек значительно перекрываются. Поэтому, как правило, в процессе восприятия глазом падающего на него света возбуждаются все три сорта колбочек. А поскольку чувствительности разных типов колбочек отличаются очень сильно, то глаз человека имеет неодинаковую чувствительность к разным длинам волн. Особенно хорошо воспринимается зеленый цвет, красный - несколько слабее, а чувствительность к синему цвету чрезвычайно низка. В результате отдельные цветовые составляющие цветного изображения вносят разный вклад в ощущение яркости.
На практике в качестве яркостной характеристики чувствительности глаза обычно используют кривую спектральной чувствительности (рис. 5.7). Для дневного освещения ее можно получить путем суммирования приведенных на рис.5.7 спектральных составляющих трех типов колбочек с последующим нормированием полученной кривой (путем деления всех ее составляющих на максимальное значение яркости). По существу этот график представляет собой не что иное, как КПД человеческого глаза. По графику можно легко оценить, какая часть попавшего в глаз света вносит наибольший вклад в формирование ощущения цвета. Так, для получения с помощью синего цвета такого же ощущения яркости, как от зеленого цвета, его реальная энергия должна быть в несколько раз выше.
Рис.
5.7. Кривые спектральной чувствительности
глаза при различных условиях внешнего
освещения: 1- в сумерках, 2 - при дневном
освещении
При получении кривой спектральной чувствительности в качестве нормирующего коэффициента используется принятая за единицу спектральная эффективность желто-зеленого излучения с длиной волны 555 нм. Для отображения интенсивности составляющей спектра используется обозначение Vג.
При оценке яркостной чувствительности цвета следует учитывать, что свой вклад в ощущение яркости вносят как колбочки, так и палочки. А поскольку максимальная чувствительность палочек по сравнению с колбочками лежит в более коротковолновой области спектра (соответственно 500 нм против 555 нм), то именно этим фактором объясняется зависимость спектральной чувствительности от внешней освещенности.
Вклад палочек и колбочек в результирующее значение яркости определяется условиями освещенности. Так, в темноте работают только палочки. В сумерках в формировании яркостного восприятия участвуют и палочки, и колбочки, а при повышении уровня освещенности начинают доминировать палочки.
В результате проведения многочисленных психологических тестов наряду с теоретическими исследованиями было установлено, что для большинства людей ощущение яркости при восприятии цветных изображений определяется на 71,5% зеленой составляющей, 21 % - красной и 7,2% - синей. Таким образом, если известны зеленая, синяя и красная составляющие источника цвета, то воспринимаемая нашим глазом результирующая яркость такого источника может быть определена по формуле:
Яркость = 0,715160 × зеленый + 0,212671 × красный + 0,072169 × синий.
Существуют и другие выражения для определения яркости.
Для стандарта в области NTSC телевидения:
Яркость = 0,59 × зеленый + О J ×красный + 0,11 ×синий.