Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TR_1_Algebra_i_analiticheskaya_geometria.doc
Скачиваний:
0
Добавлен:
05.02.2020
Размер:
1.62 Mб
Скачать

11. Найти единичный вектор, перпендикулярный векторам и

.

12. Проверить, лежат ли точки А(5; 2; 0), В(2; 5; 0), С(1; 2; 4) и D(-1; 1; 1) в

одной плоскости?

13. Даны две смежные вершины А(5; -2) и В(3; 1) параллелограмма ABCD и

точка Q(0; 2) пересечения его диагоналей. Составить уравнения сторон BC и

CD и прямой, проходящей через точку Q параллельно стороне ВС.

14. Написать уравнение плоскости, параллельной оси и проходящей через

точки A(2; 2; 0) и B(4; 0; 0).

15. Указать особенность в расположении прямой .

16. Найти проекцию точки М(3;1;-1) на плоскость x + 2y + 3z – 30 = 0.

Вариант 22

1. 2. , ,

3. , 4.

5. =

6. 7. 8.

9. ={6; 5; -14}, ={1; 1; 4}, ={0; -3; 2} и ={2; 1; -1}

10. Вычислить проекцию вектора на направление вектора , где

А(7; 3; -2), В(8; 2; -2).

11. Раскрыть скобки и упростить выражение .

12. Проверить, будут ли компланарны векторы , ,

?

13. Вершины треугольника А(-3; 3), В(5; 1), С(6; -2). Составить уравнения:

а) медианы, проведенной из вершины С;

б) высоты, опущенной из вершины А на сторону BC.

14. Найти угол между плоскостями x – 2y + 2z – 8 = 0 и x + z – 6 = 0.

15. Написать уравнение перпендикуляра, опущенного из точки М(-1; 2; 3) на

ось .

16. Через точку М(1;-1; 2) провести плоскость так, чтобы она была параллельна

прямым и .

Вариант 23

1. 2. , ,

3. , 4. 5.

6. 7.

8.

9. ={-15; 5; 6}, ={0; 5; 1}, ={3; 2; -1} и {-1; 1; 0}

10. Заданы точки А(-2; 4; 0), В(1; 3; -5) и С(0; -1; 1) и вектор .

Вычислить скалярное произведение векторов ( ) и ).

11. Вычислить площадь треугольника, построенного на векторах

и .

12. Какую тройку (левую или правую) образуют векторы , и ,

если А(1; 1; -1), В(2; 3; 1), С(3; 2; 1) и D(5; 9; 8).

13. Найти уравнение прямой, проходящей через точку M(1; -4) и

a) параллельной прямой 2x – 3y = 1;

б) перпендикулярной прямой 5x – 7y + 3 = 0.

14. Написать уравнение плоскости, проходящей через точку M(-1; -1; 2) и

перпендикулярной к плоскостям x – 2y + z – 4 = 0 и x + 2y - 2z + 4 = 0.

15. Написать уравнение прямой, проходящей через точку M(-1; 3; 2)

параллельно оси .

16. Найти проекцию точки A(2; 3; 4) на прямую x = y = z.

Вариант 24

1. 2. , ,

3. , 4. 5. =

6. 7. 8.

9. ={8; 9; 4}, ={1; 0; 1}, ={0; -2; 1} и {1; 3; 0}

10. Найти работу силы на перемещении , если , ,

.

11. Заданы точки А(0; 2; 0), В(3; 0; -4), С(2; 1; 1) и D(-1; -1; -1). Вычислить

векторное произведение векторов ( ) и .

12. Найти объём параллелепипеда, построенного на векторах , , .

13. Даны уравнения двух смежных сторон параллелограмма: x - y -1 = 0;

x – 2y = 0 и точка пересечения его диагоналей М(3; -1). Найти уравнения

двух других сторон параллелограмма.