Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TR_1_Algebra_i_analiticheskaya_geometria.doc
Скачиваний:
0
Добавлен:
05.02.2020
Размер:
1.62 Mб
Скачать

Вариант 7

1. 2. , ,

3. , 4.

5.

6. 7. 8.

9. ={-9; 5; 5}, ={4; 1; 1}, ={2; 0; -3} и ={-1; 2; 1}

10. Треугольник АВС задан координатами своих вершин А(-1; -2; 4), В(-4; -2; 0)

и С(3; -2; 1). Определить его внешний угол при вершине В.

11. Раскрыть скобки и упростить выражение:

.

12. Вычислить объем параллелепипеда, построенного на векторах

, , , где и - взаимно

перпендикулярные орты.

13. Стороны АВ и ВС параллелограмма заданы уравнениями 2x – y + 5 = 0 и

x – 2y + 4 = 0, диагонали его пересекаются в точке М(1; 4). Найти уравнение

сторон CD и AD.

14. Найти уравнение плоскости, проходящей через точку М(2; -3; 1)

параллельно векторам и .

15. Даны вершины треугольника А(1; 0; -1), В(2; 1; 3), С(0; -1; 1). Составить

уравнение высоты, опущенной из вершины В на сторону АС.

16. Найти основание перпендикуляра, опущенного из точки А(-1; 3; 2) на

плоскость 2x – y + z + 3 = 0.

Вариант 8

1 . 2. , ,

3. , 4. 5. =

6. 7. 8.

9. ={-5; -5; 5}, ={-2; 0; 1}, ={1; 3; -1} и ={0; 4; 1}

10. Найти координаты вектора , коллинеарного вектору ={3; -4; 0}, если известно, что вектор образует с осью тупой угол и =10.

11. ={3; 1; -1}, ={-2; 1; 4}. Вычислить .

12. Вычислить объем треугольной пирамиды с вершинами A(0; 0; 1), B(2; 3; 5),

C(6; 2; 3) и D(3; 7; 2).

13. Написать уравнение прямой, проходящей через точку М пересечения

прямых 2x + y + 6 = 0 и 3x + 5y – 15 = 0 и через точку N(1; -2).

14. Найти уравнение плоскости, проходящей через точку М(2; 5; 3) параллельно

плоскости x + 2y - 3z + 2= 0 .

15. При каком значении прямые и

перпендикулярны?

16. Проверить, что прямые и пересекаются.

Найти уравнение плоскости, в которой они лежат.

Вариант 9

1. 2. , ,

3. , 4. 5.

6. 7. 8.

9. ={13; 2; 7}, ={5; 1; 0}, ={2; -1; 3} и ={1; 0; -1}

10. По координатам вершин треугольника АВС A(1; 1; -1), B(2; 4; -1) и

C(8; 3; -1) выяснить, является ли он прямоугольным, остроугольным или

тупоугольным.

11. Раскрыть скобки и упростить выражение:

.

12. При каком m векторы , и

компланарны?

13. В треугольнике АВС даны: уравнение стороны АВ: 3x + 2y = 12, уравнение

высоты BM: x + 2y = 4 , уравнение высоты АМ: 4x + y = 6, где М - точка

пересечения высот. Написать уравнения сторон АС и ВС.

14. Найти уравнение плоскости, проходящей через точки А(2; 3; -1) и В (1; 5; 3)

перпендикулярно плоскости 3x – y + 3z + 15 = 0 .

15. Через точку М(2; -1; 3) провести прямую, параллельную прямой

.

16. Написать каноническое уравнение прямой, которая проходит через точку

М(3; -2; -4) параллельно плоскости 3x – 2y – 3z – 7=0 и пересекает прямую

.