- •Апм или а,) в зависимости от влажности. Почвы:
- •9.1. Видовой состав бацилл в почвах разных типов, % (горизонт а1 или Апах)
- •9.2. Биогеоценотическая деятельность микробного комплекса
- •9.3. Численность бактерий (%), способных синтезировать биологически активные вещества (Локхед, 1972)
- •9.4. Микробная продуктивность почв под древесными насаждениями Лесной опытной дачи мсха в верхнем 10-сантиметровом слое
- •(Для верхнего 10-сантиметрового слоя):
- •9.17. Взаимодействие между макро- и микроэлементами в растениях (Кабата-Пецдиас, Пендиас, 1989)
- •9.18. Принципиальная схема оценки почв сельскохозяйственного использования по степени загрязнения химическими веществами (Госкомприрода ссср, 1990)
- •9.19. Шкала экологаческого нормирования содержания тяжелых металлов (мг/кг) для геохимической ассоциации почв со слабокислой и кислой реакцией (Обухов, Ефремова, 1991)
- •9.21. Оценка состояния экосистем
- •9.23. Фоновое содержание элементов в почве, мг/кг
- •Глава 10
- •10.1. Химические элементы, аккумулируемые водными растениями
- •Ряс. 10.7. Зависимость среднегодового выноса фосфора от густоты гидрографической сети залесенных водосборов (Хрисанов, Осипов, 1993)
- •10.2. Экологические и санитарно-гигиенические последствия эвтрофирования
- •10.2. Значения пдк биогенных веществ, мг/л
- •10.3. Сельскохозяйственные источники биогенной нагрузки
- •10.4. Вероятностный вынос биогенных веществ в водоеодл с селитебных территорий агроландшафта
- •10.6. Среднегодовое поступление минеральных азота и фосфора с атмосферными осадками на земную новерхностъ
- •10.7. Коэффициенты поверхностного стока в зависимости от вида угодий и гранулометрического составе почв
- •10.8. Среднегодомя кояадипрацня фосфора ва ю-досборах с различнымраспределением лесной растительности
- •10.4. Определение выноса биогенных элементов с сельскохозяйственных
- •10.9. Коэффициенты выноса биогенных веществ
- •10.10. Вынос биогено* из почвы с урожаем сельскохозяйственных кулыур, кг/т
- •10.11. Среднее содержание биогенных веществ в удобрениях, %
- •10.14. Средаее значение основных показателей формулы (11) для зяби
- •10.15. Коэффициент дешевого стока (аж)
- •10.19. Ширим прирусловых лесяых насаждений в водоохранных зонах малых рек, м
- •Глава 11 экологические проблемы химизации
- •11.2. Вынос азота из почв, занятых различными культурами, кг/га
- •11.3. Экологические ограничения при фосфоритовании почв
- •11.2. Применение химических средств защиты растений
- •Также включаются в наземную и пресноводную биомассу (Rudd, 1971, цит. По Рамад, 1981)
- •11.8. Балльная система экотоксикологической
- •Морских организмов (Рамад, 1981)
- •11.9. Некоторые примеры положительных результатов применения комплексной борьбы с
- •От вредных организмов) (Соколов и др., 1994):
- •11.3. Экологические аспекты известкования почв
- •11.10. Экологические ограничения при известковании кислых почв
- •11.11. Содержание тяжелых металлов в почве и ивзестковых материалах
- •Глава 12 экологические проблемы орошения и осушения почв
- •12.1. Сводная таблица некоторых основных видов и способов мелиорации
- •12.1. Экологические последствия орошения
- •12.2. Классификация почв по степени и качеству засоления
- •12.2. Экологические последствия осушения*
- •Глава 13 животноводческие комплексы и охрана природы
- •13.1. Отрицательное влияние
- •Отходов животноводства
- •На окружающую природную
- •13.2. Методы очистки и утилизации навозных стоков
- •13.1. Выход навозной массы и расход технологической воды для молочного комплекса на 1000 коров
- •13.3. Схема трубно-рециркуляционной системы уборки навоза:
- •13.2. Ширина санитарно-защитных зон до границы жилой зоны
- •Глава 14
- •Картофеля (б) при увеличении плотности почвы (Курочкин, 1989)
- •14.1. Содержание вредных веществ в отработанных газах двигателей внутреннего сгорания (двс), % (Боева, 1982)
- •14.2. Образование токсичных веществ при сжигании органического топлива, г/кг (Боева, 1982)
- •15.1. Содержание важнейших естественных радионуклидов в некоторых объектах агросферы, Бк/кг (Алексахнн, 1992)
- •15.3. Миграция радионуклидов по сельскохозяйственным цепочкам
- •15.2. Коэффициенты накопления радионуклидов растениями (Санжарова и др., 1992)
- •15.5. Тип распределения радионуклидов в организме сельскохозяйственных животных
- •15.6. Коэффициенты перехода радионуклидов из рациона крупного рогатого скота в мышцы
- •15.7. Коэффициенты перехода радионуклидов в условиях их длительного поступления из рациона
- •В молоко коров (равновесное накопление
- •И выведение), % суточного поступления в 1 л удоя
- •(Романов, 1993)
- •15.8. Накопление 90Sr и i37Cs озимой пшеницей в богарных и орошаемых условиях, % (Алексахин и др.,
- •15.4. Действие ионизирующих излучений на растения, животных и агроценозы
- •15.9. Стимулирующие дозы облучения семян некоторых видов сельскохозяйственных культур (Филипас и др., 1992)
- •15.11. Полулетальные дозы у-излучения для сельскохозяйственных животных (Кругляков и др., 1992)
- •15.12. Радиоэкологические последствия аварии на Чернобыльской аэс (Алексахин, 1993)
- •15.5. Радиационный мониторинг сферы сельскохозяйственного производства
- •15.13. Характеристика выбросов радионуклидов в окружающую среду при тяжелых радиационных авариях
- •15.14. Эффективность мелиоративных сельскохозяйственных мероприятий при радиоактивном загрязнении
- •15.15. Радиологическая эффективность и социально-экономические последствия изменения характера землепользования на загрязненных территориях (Алексахин, Фриссел, 1993)
- •Глава 16
- •16.1. Общие положения
- •16.2. Развитие альтернативного земледелия
- •16.2. Выход клубней картофеля при разных способах подготовки семенного материала
- •16.3. Сравнение феноменологических моделей агроэкосистем «зеленой революции» и «зеленой эволюции» (по б. М. Миркину, р. М. Хазиахметову)
- •Глава 17
- •17.1. Характеристика вермикультуры
- •17.2. Биогумус и его агроэкологическая оценка
- •17.1. Влияние биогумуса на содержание витамина с, мг/100 г, в различной сельскохозяйственной продукции по сравнению с применением навоза и
- •Мониторинг окружающей природной среды. Научные, методические и организационные основы его проведения
- •18.1. Основные задачи и схема мониторинга
- •18.3. Особенности проведения экологического мониторинга дистанционными методами
- •Глава 19
- •19.1. Агроэкологический мониторинг в интенсивном земледелии
- •19.2. Компоненты агроэкологического мониторинга
- •19.1. Контролируемые параметры, подлежащие мониторингу при всех ввдах предварительного обследования (преимущественно при маршрутных формах его реализации)
- •19.2. Примерный перечень контролируемых параметров для участках мониторинга
- •19.3. Перечень обязательных показателей качества продукции растениеводства для исследований в агроэкологическом мониторинге
- •19.3.Эколого- токсикологическая оценка агроэкосистем
- •19.4. Степень деградации гумусовых кислот дерново-подзолистых почв, % к гумусовым кислотам недеградированных почв
- •19.5. Поправочные коэффициенты для оценки степени деградации гумусовых соединений почв
- •Разного гранулометрического состава
- •19.5. Экологическая оценка загрязнения тяжелыми металлами
- •Глава 20
- •20.1. Общие положения
- •20.1. Ранжирование состояния экосистем по ботаническим нарушениям
- •20.2. Ранжирование состояния экосистем по биохимическим нарушениям
- •20.3. Ранжирование состояния экосистем по почвенным нарушениям
- •20.4. Выделение нарушенных зон экосистем в зависимости от глубины экологического нарушения и его площади
- •20.5. Классификация зон с учетом степени нарушенности площадей
- •20.3. Оценка загрязнения атмосферного воздуха
- •20.6. Критерии оценки степени загрязнения атмосферного воздуха по максимальным разовым концентрациям
- •20.7. Критерий оценки степени загрязнения атмосферного воздуха по среднесуточным концентрациям
- •20.8. Критерии оценки среднегодового загрязнения атмосферного воздуха
- •20.9. Критерии оценки состояния загрязнения атмосферы по комплексному индексу (киза)
- •20.10. Критерии загрязнения атмосферного воздуха по веществам, влияющим на наземную растительность и водные экосистемы
- •20.11. Показатели для оценки степени химического загрязнения поверхностных вод*
- •20.5. Индикационные критерии оценки
- •20.12. Оценка состояния поверхностных и сточных вод на основе биотестов (по состоянию тест-объекта)
- •20.13. Ранжирование состояния поверхностных вод по ресурсному критерию
- •20.6. Подземные воды
- •20.7. Загрязнение и деградация почв
- •20.8. Изменения геологической среды
- •Глава 21 экология селитебных территорий
- •21.1. Особенности современной экологической среды мест расселения человека
- •21.1. Группы поселений в зависимости от их численности
- •21.2. Ориентировочный баланс компонентов природной среды города с населением 1 млн жителей
- •21.3. Основные показатели, характеризующие воздействие жилищно-коммунального хозяйства
- •21.4. Медико-демографические критерии здоровья населения для оценки экологического состояния территорий
- •21.2. Проблемы физического загрязнения селитебной зоны
- •21.5. Производство тбо в различных странах
- •21.6. Утилизация мусора в некоторых странах
- •21А оптимизация экологического состояния сельских поселений
- •Глава 22
- •22.1. Общие положения
- •22.2. Устойчивость и изменчивость агроэкосистем
- •Некоторой системы во времени h(t) при различных нагрузках (Израэль, 1979):
- •22.3. Основные принципы организации агроэкосистем
- •22.1. Урожайность основных сельскохозяйственных культур в зависимости от условий рельефа, т/га (Варламов и Волков, 1991)
- •22.3. Сравнительная пригодность антропогенно- обусловленных участков для возделывания сельскохозяйственных культур с учетом природноохранных ограничений (Варламов и Волков, 1991)
- •22.4. Оптимизация структурно-функциональной организации
- •Агроэкосистем — основа
- •Повышения их продуктивности
- •И устойчивости
- •22.5. Методологические основы экологической оценки агроландшафтов
- •22.6. Устойчивость агроэкосистем
- •22.7. Реакция микробного сообщества на антропогенное воздействие
- •22.4. Адаптивные зоны изменчивости микробного сообщества в зависимости от уровня антропогенной
- •Нагрузки
- •22.8. Типы реакции агрофитоценоза на антропогенные воздействия
- •22.5. Использование азота удобрений растениями и его потери при различных способах внесения азотных удобрений, % от внесенной дозы
- •22.9. Устойчивость агроэкосистем при разных системах земледелия
- •22.10. Условия реконструкции и создания устойчивых агроэкосистем
- •Глава 23 производство экологически безопасной продукции
- •23.1. Эколого-токсико-логические нормативы
- •23.2. Вещества, загрязняющие продукты питания и корма
- •23.1. Распределение свинца в кочане различных сортов капусты белокочанной, м/кг сухого вещества
- •23.2. Распределение свинца в разных органах растений, мг/кг сухого вещества
- •Белокочанной (б) тяжелых металлов (мг/кг сухого вещества) и нитратов — цифры в кружочках (nOa, мг/кг сырой массы)
- •23.3. Предельно допустимые концентрации тяжелых металлов в пищевых продуктах и продовольственном сырье, мг/кг (Кольцов, 1995)
- •23.4. Допустимые остаточные количества тяжелых металлов в пищевых продуктах, мг/кг (Найштейн и др., 1987)
- •23.9. Снижение содержания нитратов в продукции при хранении, % исходного количества
- •23.10. Снижение содержания нитратов в различных продуктах в процессе варки
- •23.11. Содержание нитратов в соке из некоторых овощей
- •Для многих канцерогенных веществ
- •23.12. Содержание пхб в органах и тканях рыб из реки Оки, мкг/кг
- •23.13. Предельно допустимые нормы содержания антибиотиков в животноводческих продуктах, мкг/г или мкг/мл (Кольцов, 1995)
- •23.3. Способы исключения или минимизации негативных воздействий загрязнений
- •23.4. Сертификация пищевой продукции
- •И потребления (Киприянов, 1997)
- •Продуктов:
- •Глава 24
- •24.1. Организация охраны природы
- •24.2. Законы экологии б. Коммонера
- •24.3. Основные направления природоохранной деятельности
- •24.4. Опыт охраны природы в сельском хозяйстве
- •Заключение
10.3. Сельскохозяйственные источники биогенной нагрузки
Основные гидрологические изменения в различных природных комплексах произошли в исторически обозримом прошлом под влиянием расширения земледельческих площадей, что явилось мощным фактором формирования современного агроландшафта.
В целом все водные бассейны, особенно бассейны крупных рек, — это территории высокой антропогенной нагрузки. На 20 % площади суши нашей планеты проживает 90 % населения и развиваются все наиболее водоемкие отрасли хозяйственной деятельности. Площади водосбора малых водных объектов являются основной территориальной базой развития агропромышленного комплекса. Это место проживания 90 % сельского населения Российской Федерации; здесь сформировались природно-аграрные системы, что сопровождалось превращением части лесов и степей в поля, пастбища, сенокосы, сады, ягодники и плантации, которые функционируют, испытывая воздействие всех факторов интенсификации сельскохозяйственного производства.
В контексте воздействия на водные ресурсы современный аграрный сектор — это не только богарное и орошаемое земледелие, осушительные и обводнительные мелиорации, но и стойловое (промышленное) и пастбищное животноводство, агротехнические и агрохимические приемы земледелия, сфера технического и энергетического обеспечения сельскохозяйственного производства, агролесомелиоративные мероприятия и т. д. Многие исследователи признают, что интенсивно развивающееся сельское хозяйство — это наиболее активный источник поступления биогенных элементов.
215
Вывод Международной комиссии по эвтрофированию водоемов о том, что рассредоточенные источники играют более важную роль в загрязнении водных объектов биогенными элементами, чем городские сточные воды, подтверждают результаты, полученные в разных странах. Так, в Швейцарии более 70 % азота и 50 % фосфора поступает в водоемы с сельскохозяйственных полей; в США обнаружены высокие концентрации азота (10 мг/л) в реках, протекающих через аграрные районы; в Германии 54 % азота поступает в водоемы с сельскохозяйственных полей, 24 — с промышленным сбросом и только 22 % — с хозяйственно-бытовыми стоками.
За последние 20 лет поступление биогенных веществ с поверхностным стоком в водохранилища Волги и Днепра увеличилось в 2 раза. При этом доля сельхозугодий в поступление общего азота составляет 70 %, минерального фосфора — 36%. Картина преимущественного сельскохозяйственного поступления биогенов в водоемы характерна для многих крупных водных объектов, поскольку 50 % их водных масс формируется в агроландшафтах стоком малых рек, находящихся в непосредственной зависимости от состояния агросистем.
Влияние сельского хозяйства как источника поступления биогенных веществ в водные ресурсы возрастает в связи с увеличением распаханности территорий, трансформации угодий мощной техникой и гидромелиорацией, развитием процессов химизации на основе как минеральных, так и органических удобрений. Эти факторы вызывают изменение величины и направленности потоков биогенных элементов в агро-ландшафте. Все процессы трансформации угодий, как целенаправленные, являющиеся основными производственными действиями (пахота, боронование, окультуривание сенокосов и пастбищ, планировка земель для обработки), так и сопутствующие (последствия движения по сельхозугодьям при посеве, выращивании и уборке урожая, химической обработки полей) способствуют механическому перераспределению вещества в агроландшафте. В этом
заключается принципиальное различие промышленно-урбанизированной и сельскохозяйственной ветвей биогенной нагрузки на водные ресурсы. Первая — новая, сугубо антропогенная цепочка поступления биогенов и соответственно требует кардинальных мер по предупреждению сброса сточных вод промышленности, энергетики, транспортных предприятий и коммунально-бытового хозяйства городов в водные объекты. Во второй (сельскохозяйственной) ветви сектор промышленного животноводства имеет аналогичные особенности в связи с нарастанием концентрации поголовья и применением интенсивных технологий, а земледельческая часть является отдельно рассматриваемой системой, поскольку в ней в основном сохраняется механизм природной миграции биогенов. Однако трансформация, охватывая значительные по площади территории и разрушая естественную структуру почвенного покрова, способствует водной и ветровой эрозии, смыву и вымыванию, т. е. миграции биогенных веществ. Она становится усилителем нежелательных, экологически опасных естественных процессов, зависящих от природных факторов и особенностей: промывного режима почв, расчлененности рельефа, эрозионности, густоты гидрографической сети, скорости ветра, интенсивности снеготаяния, смываемости почв, промерзания почвенного слоя и интенсивности его оттаивания и др. Кроме того, как было показано ранее, в условиях интенсивного развития сельского хозяйства изменяется естественный цикл круговорота питательных веществ, нарушается сложившийся механизм их потоков, что особенно характерно для главных элементов, участвующих в эвт-рофировании, — азота и фосфора.
Основными источниками биогенной нагрузки в пределах аграрных территорий являются сельскохозяйственные угодья (пашни, сенокосы, пастбища), объекты животноводства (помещения для содержания скота, отстойники сточных вод, навозохранилища и жижесборники), склады минеральных удобрений, сельские населенные пункты и территории садово-огородных товариществ, а также естественный расти-
216
тельный покров (леса, луга, болота) и атмосферные осадки (рис. 10.14). Эти источники подразделяются на рассеянные (диффузные, или площадные) и точечные (сконцентрированные в пределах ограниченного пространства).
Влияние рассеянных и точечных источников биогенной нагрузки агроэко-систем на загрязнение вод определяется следующими показателями: потери биогенных веществ в растениеводстве и животноводстве, их смыв в результате эрозионных процессов, вынос питательных веществ с коммунально-бытовыми стоками сельских населенных
пунктов, а также их поступление в природную среду с атмосферными осадками и разложившимся естественным растительным опадом.
Потери биогенных веществ в растениеводстве условно можно разделить на естественные и технологические. Первые в основном зависят от интенсивности распашки территории, приемов земледелия, количества вносимых минеральных удобрений и объема по-жнивно-корневых остатков, образующихся после уборки урожая культурных растений, а вторые — от различных нарушений, происходящих во время дос-
217
тавки и внесения удобрений на сельскохозяйственные угодья.
Растениеводство■.— один из значимых и сложных элементов агроэкосис-тем и оказывает неординарное воздействие на формирование биогенной нагрузки. Распашка территории, изменяя условия формирования водного стока, способствует активному выносу биогенных веществ в природную среду и водотоки. Распаханные почвы по сравнению с их естественными аналогами обладают совершенно иными водно-физическими свойствами. Для них характерны низкая водопроницаемость и значительный поверхностный сток. Интенсивное развитие процессов физико-механического выветривания и смыва почвообразующих пород способствует повышению минерализации поверхностных вод. В то же время растения играют значительную роль в сдерживании и снижении смыва и вымывания биогенов.
Площадь эрозионно опасных и подверженных эрозии сельскохозяйственных угодий составляет в России 124 млн га (56 % их общей площади), из них 87,3 млн га — пашни. Ежегодно около 25—30 тыс. га черноземов выводится из сферы сельскохозяйственной деятельности в результате роста оврагов. Объем поверхностного стока талых и дождевых вод с сельскохозяйственных угодий, расположенных на склонах крутизной более Г, приближается к 90 млрд м3/год. Этот поток смывает почти 1,5 млрд т почвы. Вынос питательных веществ с этой массой почвы вдвое превышает их количество, вносимое с удобрениями. Более 26 млн га (20,4%) пашни России находится на смытых почвах. На многих расчлененных территориях с черноземными почвами более 50 % распаханных земель эродированы и являются мощным источником поступления биогенных веществ в водные объекты.
Дополнительный транспорт биогенов может быть связан и с агротехническими приемами. Так, осенняя подготовка почвы под яровые и пропашные культуры вместо весенней способствует уменьшению поверхностного склонового стока ив итоге приводит к сокращению выноса биогенных веществ. Одна-
ко вместе с тем зяблевая вспашка нарушает противоэрозионную устойчивость почвенного покрова и благоприятствует увеличению выноса биогенов с продуктами эрозии.
При длительном применении больших доз удобрений вынос биогенных веществ с поверхностным стокомвозра-стает вследствие их накопления в пахотном слое почвы. Аналогичная картина наблюдается при внесении удобрений по мерзлой почве и особенно весной по талому снегу. Это подтверждают приведенные ниже данные по выносу биогенных веществ (мг/л) с сельскохозяйственных угодий с поверхностным стоком при внесении 1 кг действующего вещества на 1 га:
Способ внесения удобрений Азот Фосфор
Осенью под вспашку 0,010 0,0013
Осенью поверхностно 0,085 0,0310
Осенью поверхностного 0^216 0,0510 мерзлой почве
Весной по талому снегу 0,866 0,5940
Рис. 10.15. Вынос общего фосфора в зависимости от твердого стока (Хрисанов, Осипов, 1993)
Эрозия почв, стимулируя вынос биогенных веществ с водосбора, активно влияет на биогенное загрязнение вод, й первую очередь фосфором. Вспашка, особенно зяблевая, приводит \ к тому^ что потери фосфора с твердым стоком становятся преобладающими й достигают более 90 % его общих потерь. При этом характерно, что вынос фосфора со смытой почвой пропорционален смыву. Масштабы влияния эрозионных процессов на биогенное загрязнение вод очень велики. Например, с каждой тонной твердого стока с 1 га сельскохозяйственных угодий выносится около 1 кг общего фосфора (рис. 10.15).
218
Территориальные особенности смыва биогенов хорошо прослеживаются при рассмотрении условий поверхностного смыва дождевыми водами. В этой связи на территории Нечерноземной зоны России выделяют три пояса: слабого смыва (характеризуется модулем смыва менее 0,1 т/га), умеренного (от 0,1 до 1,0 т/га) и интенсивного (более 1,0 т/га). Водоемы Нечерноземья находятся в условиях интенсивного эвтро-фирования из-за эрозионного разрушения почв.
Промывной тип водного . режима, при котором количество выпадающих осадков превышает количество испаряемой из почвы влаги, является важным фактором вымывания элементов из почвы. Чем больше воды просачивается через корнеобитаемый слой почвы, тем выше потери растениями элементов литания и тем большее их количество попадает в подземные воды. Инфильтрацию атмосферных осадков в связи с процессом усиления биогенной нагрузки исследуют в различных условиях, что позволяет выявить факторы снижения интенсивности данного процесса.
В центральной части Нечерноземья в среднем выпадает около 670 мм осадков, что формирует примерно 60-миллиметровый слой почвенного стока. В таких условиях осадки в виде гравитационной влаги могут проникать в почву вплоть до грунтовых вод. Йросачива-ние, а следовательно, и вымывание элементов зависят от многих факторов: времени года, количества осадков, их интенсивности и вида, температуры воздуха и почвы, свойств почвы, вида растений, их урожайности и степени обеспеченности удобрениями.
Наибольшее количество инфильтра-ционных вод образуется в ранневесен-ний период, когда насыщенность почвы влагой превышает полную полевую вла-гоемкость. Аналогичная ситуация складывается в осенне-зимний период, когда почва свободна от растительности. В поздневесенний и летний периоды основная масса выпадающих осадков расходуется на трансцирацию и образование фитомассы. Эта закономерность ат-мосферно-почвенно-водных процессов, как и использование противоэрозион-ной роли растений, является основопо-
лагающей при обосновании агрохимических приемов.
Четкая связь между устойчивостью агроэкоеистем и состоянием водных ресурсов выявляется и при рассмотрении инфильтрационных процессов: количество просачивающейся воды меняется в зависимости от гранулометрического состава почвы, что обусловлено различиями во влагоемкости и водоудержива-ющей способности. Чем выше плодородие почвы и содержание в ней гумуса, тем больше ее гигроскопичность, а следовательно, и такие показатели, как влагоемкость и водоудерживающая способность. В то же время обеспеченность растений биогенами и влагой в наиболее критические фазы развития способствует максимальному усвоению питательных веществ и снижению их вымывания, т.е. состояние растений играет достаточно важную роль в развитии процессов смыва и вымывания. Результаты проведенных исследований свидетельствуют о том, что важную роль в развитии этих процессов играет также совершенствование посевных площадей путем введения травосеяния, использования промежуточных и пожнивных культур и т. д. Пожнивные посевы в севообороте уменьшают вымывание азота на 50 %, фосфора ~»на 30 %; на площадях, занятых под многолетние травы, потери азота снижаются на 30—40 %.
В условиях использования интенсивных технологий в растениеводстве снижение вымывания достигается комплексом мероприятий, включающих, в частности/оптимальное внесение удобрений в периоды активного потребления биогенов растениями, применение слаборастворимых, медленнодействующих видов минеральных удобрений, использование таких их форм, которые не содержат несорбируемых почвой ионов, применение ингибиторов нитрификации, соблюдение нормативов по дозам и способам внесения удобрений, особенно жидких органических, и т. д.
Благодаря многочисленным исследованиям установлены числовые значения средних ежегодных выносов биогенов в водные источники для различных типов почв. Дерново-подзолистые и серые лесные'пахотные почвы характеризуются следующими средними значени-
ями вымывания (кг/га в год): N—N0. — 10...30, Са-140...180, Mg-25...40, К-10...20, Р2О5-0,4...1,0, S-SO,-40...60. В этих показателях отражается воздействие как естественных, так и антропогенных циклов круговорота веществ, в основном регионального характера, но с определенным наложением глобального из-за поступления биогенов с атмосферными выпадениями (сухое осаждение, дожди или снегопады).
Наряду с растениеводством немаловажным источником биогенного загрязнения вод является! животноводство. Степень его воздействия на водные объекты в каждом конкретном регионе определяется общим поголовьем скота, особенностями расположения животноводческих ферм и комплексов на водосборах, а также принятой в хозяйствах технологией содержания животных.
На значительной части территории России ббльшую часть года скот находится в стойлах. Лишь в поздневесен-ний и летний периоды животных переводят на пастбища. Поступление загрязняющих веществ в водотоки с животноводческих ферм и комплексов зависит от способа удаления навоза. Оно происходит при прямом смыве сточных вод после очистки, а также в результате потерь, возникающих в процессе утилизации отходов животноводства.
При стойловом содержании скота накапливаются большие массы навоза. Из-за его несовершенной утилизации в водные системы выносятся немалые количества грубодисперсной малоразло-жившейся органики и биогенных веществ. По оценкам некоторых специалистов, потери органических отходов на фермах и комплексах составляют в среднем 20—40 % их объема. При выпасе скота на пастбищах также происходит вынос биогенных веществ в водотоки, поскольку пастбищные угодья чаще всего размещают в речных долинах. Влияние животноводства на биогенное загрязнение вод обусловлено и тем, что фермы и комплексы располагаются преимущественно в непосредственной близости от рек и озер. Поскольку продолжительность миграционного пути биогенов от их источников до водных объектов невелика, они не успевают
закрепиться в почве и их концентрация остается высокой. Управление движением биогенных веществ от источников их образования на основе рециклиза-ции является экологически обоснованным и экономически оправданным, поскольку способствует решению проблемы повышения продуктивности агро-экосистем (табл. 10.3, см. рис. 10.16).
10,3. Содержание Сотенных веществ в отоддо животноводства, г/сут на 1 голову
Вид скота |
Азот |
Фосфор |
Калий |
КРС Свиньи |
180 38 |
87 16 |
190 50 |
Кроме того, на всех стадиях производства растениеводческой и животноводческой продукции происходят потери биогенных веществ, обусловленные различными нарушениями используемых технологий (технологические потери), что существенно увеличивает вынос биогенов в водотоки. В ряду факторов, способствующих увеличению потерь биогенов, уместно отметить следующие:
отсутствие или недостаточная емкость специальных навозохранилищ и жижесборников при фермах и комплексах, что приводит к необходимости частого вывоза навоза на поля, однако из-за нехватки транспорта это, как правило, не осуществляется;
размещение ферм и комплексов в непосредственной близости от уреза воды, что приводит к прямому выносу биогенных веществ в водотоки;
вывоз навоза на поля в зимний период (по снегу), что в условиях снеготаяния способствует интенсивному смыву биогенных веществ талыми водами;
несвоевременная перепашка вывезенных на поля удобрений, что вызывает миграцию биогенных веществ по водосбору и их смыв поверхностным стоком в ближайшие водотоки;
несовершенная технология компостирования и хранения навоза, что вызывает миграцию биогенных веществ по рельефу местности;
доставка удобрений на поля на необорудованной для этой цели технике, что приводит к их потерям по дороге от хранилищ к угодьям;
отсутствие подготовленных складов
220
Рис. 10.16. Процесс рециклизации биогенов в агроландшафте (Небел, 1993)
для минеральных удобрений, что вызывает их потери во время хранения.
Наряду с перечисленными факторами на уровень технологических потерь влияют и физико-географические условия местности, причем их значение для различных природных зон, районов и хозяйств варьирует в широких пределах (рис. 10.17 и 10.18).
Большое влияние на процессы биогенного загрязнения вод оказывают селитебные территории. Хозяйственно-бытовые стоки сельских населенных пунктов могут выносить до 0,355 кг азота и 0,277 кг фосфора (на одного человека в год). Кроме того, с застроенных территорий дополнительно может смываться около 6,0 кг/га азота и 3,0 кг/га фосфора в год.
Сельские населенные пункты в основном не обеспечены очистными сооружениями. Кроме того, в последние годы естественные участки агроланд-шафтов (малопродуктивные, неудобные земли) интенсивно осваиваются городскими жителями. Во всех пригородных зонах больших и малых городов (в радиусе до 200 км и более) расширяются плотно застроенные дачные городки. И хотя они функционируют главным образом в теплый период года, изменения, вызываемые ими, наблюдаются даже без специальных исследований. Наряду с положительными эффектами облагораживания малопродуктивных участков из-за низкого уровня экологической культуры год от года, к сожалению, увеличивается захламлеллость лесных и пойменных земель бытовыми и строительными отходами. Необходима научно обоснованная оценка изменений (нарушений) естественного круговорота веществ в связи с периодической миграцией городских жителей и возникновением, докогошхельиьзд факторов воздействия на агроландшафты. Подтверждением сказанному могут служить имеющиеся оценки суточной массы загрязнений, приходящейся на одного человека (г/сут):
Показатели |
Количество |
Взвешенные вещества Азот аммонийных солей Калий (ICO) Фосфор (Р205) |
65,0 8,0 3,0 3,3 |
Хлориды Поверхностно-активные |
9,0 2,5 |
вещества БПКП0ЛН БПК5 |
75,0 54,0 |
В селах в отличие от городов сохраняются некоторые условия для закрепления биогенных элементов и хозяйственно-бытовых отходов почвами приусадебных и дачных участков. Однако нельзя не учитывать поступления биогенов с общей застроенной территории в период дождей и снеготаяния (табл. 10.4).
