- •1. Теория информации – дочерняя наука кибернетики.
- •2. Что такое информация. Свойства информации. Этапы обращения информации. Информационные системы. Что такое информация
- •Свойства информации
- •Этапы обращения информации
- •Информационные системы
- •3. Система передачи информации.
- •4. Виды информации
- •5. Задачи и постулаты прикладной теории информации.
- •6. Количественная оценка информации
- •7. Что такое канал связи. Шум в канале связи Канал связи
- •Шум в канале связи
- •8. Кодирование информации. Код. Способы кодирования. Кодирование текстовой, графической, звуковой информации.
- •Кодирование текстовой информации.
- •Кодирование графической информации.
- •Кодирование звуковой информации.
- •9. Принципы хранения, измерения, обработки и передачи информации.
- •10. Информация в материальном мире, информация в живой природе, информация в человеческом обществе, информация в науке, классификация информации. Информация в материальном мире
- •Информация в живой природе
- •Информация в человеческом обществе
- •Информация в науке
- •Классификация информации
- •11. Информатика, история информатики.
- •История информатики
- •12. Измерение количества информации. Подходы к измерению информации.
- •13. Единицы измерения информации, носитель информации
- •14. Передача информации, скорость передачи информации.
- •15. Экспертные системы. Назначение экспертных систем.
- •Назначение экспертных систем
- •16. Классификация экспертных систем.
- •17. Представление знаний в экспертных системах.
- •18. Методы поиска решений в экспертных системах.
- •19. Вероятностный подход к измерению дискретной и непрерывной информации.
- •20. Информация Фишера.
- •21. Теорема отсчетов Котельникова или Найквиста-Шеннона.
- •22. Математическая модель системы передачи информации
- •23. Энтропия. Виды энтропии. Условная энтропия.
- •24. Энтропия. Виды энтропии. Взаимная энтропия.
- •25. Энтропия. Виды энтропии. B-арная энтропия
- •26. Энтропийное кодирование.
- •27. Пропускная способность дискретного канала.
- •28. Интерполяционная формула Уиттекера-Шеннона
- •29. Частота Найквиста.
- •30. Семантика. Семантическая модель.
- •31. Семантика естественных и формальных языков. Семантическая информация.
- •32. Формула Шеннона.
- •33. Теория вероятности. Основные понятия.
- •34. Дисперсия случайной величины.
- •35. Теорема Муавра-Лапласа.
- •36. Экстраполятор нулевого порядка. Экстраполятор первого порядка
- •37. Передискретизация. Децимация.
- •38. Закон распределения вероятностей.
- •39. Простейшие алгоритмы сжатия информации
- •40. Методы Лемпела-Зива
- •41. Особенности программ архиваторов.
- •42. Применение алгоритмов кодирования в архиваторах
- •43. Принципы сжатия данных
- •44. Характеристики алгоритмов сжатия и их применимость Коэффициент сжатия
- •Системные требования алгоритмов
- •45. Коэффициент сжатия, допустимость потерь.
- •Допустимость потерь
- •46. Алгоритмы сжатия данных неизвестного формата.
- •47. Помехоустойчивое кодирование.
- •48. Линейные блочные коды.
- •49. Адаптивное арифметическое кодирование.
- •50. Полиномиальные коды.
- •51. Цифровое кодирование, аналоговое кодирование,
- •52. Дельта-кодирование.
- •53. Таблично-символьное кодирование
- •54. Числовое кодирование.
- •55. Сетевое кодирование
- •56. Кодирование Хаффмена.
- •57. Кодирование и декодирование информации
- •58. Понятие криптографии. Различные методы криптографии
- •59. Методы шифрования.
- •60. Криптография с симметричным ключом, с открытым ключом.
- •61. Криптоанализ, управление ключами.
- •62.Криптографические протоколы, Криптографические примитивы
- •Примечания:
24. Энтропия. Виды энтропии. Взаимная энтропия.
Пусть ансамбли Х и Y относятся соответственно к передаваемому и принимаемому сообщениям. Различия между Х и Y обуславливаются искажениями в процессе передачи сообщений под воздействием помех.
При отсутствии помех различий между ансамблями Х и Y не будет, а энтропии передаваемого и принимаемого сообщений будут равны: Н(Х) = Н(Y).
Воздействие помех оценивают условной энтропией НY(X). Поэтому получаемое потребителем количество информации на один элемент сообщения равно: Е(Х,Y) = Н(Х) –НY(X)
Величину Е(Х,Y) называют взаимной энтропией.
Если ансамбли Х и Y независимы, то это означает, что помехи в канале привели к полному искажению сообщения, т.е. НY(X) = Н(Х), а получаемое потребителем количество информации на один элемент сообщения:Е(Х,Y)=0.
Если Х и Y полностью зависимы, т.е. помехи в канале отсутствуют, то НY(X) = 0 и Е(Х,Y) = H(Y).
Так как НY(X) = Н(Х,Y) – H(Y), то Е(Х,Y) = H(X) + H(Y) – H(X,Y), или
.
25. Энтропия. Виды энтропии. B-арная энтропия
В общем
случае b-арная
энтропия (где b равно 2, 3, …)
источника
с исходным
алфавитом
и
дискретным распределением
вероятности
где
является
вероятностью
(
),
определяется формулой:
Примеры
Тринарная энтропия
При бросании
трёхгранного (b = 3) «чижа»,
тринарная энтропия источника («чижа»)
с
исходным алфавитом (цифры на гранях
трёхгранного «чижа»)
и
дискретным равномерным распределением
вероятности (сечение «чижа»
— равносторонний треугольник, плотность
материала «чижа»
однородна по всему объёму
«чижа»)
где
является
вероятностью
(
)
равна
трит.
Тетрарная энтропия
При бросании
четырёхгранного (b = 4) «чижа»,
тетрарная энтропия источника («чижа»)
с
исходным алфавитом (цифры на гранях
четырёхгранного «чижа»)
и
дискретным равномерным распределением
вероятности (поперечное сечение «чижа»
— квадрат, плотность материала «чижа»
однородна по всему объёму
«чижа»)
где
является
вероятностью
(
),
равна:
тетрит.
26. Энтропийное кодирование.
Энтропийное кодирование — кодирование последовательности значений с возможностью однозначного восстановления с целью уменьшения объёма данных (длины последовательности) с помощью усреднения вероятностей появления элементов в закодированной последовательности.
Предполагается, что до кодирования отдельные элементы последовательности имеют различную вероятность появления. После кодирования в результирующей последовательности вероятности появления отдельных символов практически одинаковы (энтропия на символ максимальна).
Различают несколько вариантов кодов:
Сопоставление каждому элементу исходной последовательности различного числа элементов результирующей последовательности.
Чем больше вероятность появления исходного элемента, тем короче соответствующая результирующая последовательность. Примером могут служить код Шеннона — Фано, код Хаффмана,
Сопоставление нескольким элементам исходной последовательности фиксированного числа элементов конечной последовательности.
Примером является код Танстола.
Другие структурные коды, основанные на операциях с последовательностью символов.
Примером является кодирование длин серий.
Если приблизительные характеристики энтропии потока данных предварительно известны, может быть полезен более простой статический код, такой как унарное кодирование, гамма-код Элиаса, код Фибоначчи, код Голомба или кодирование Райса.
Согласно теореме Шеннона, существует предел сжатия без потерь, зависящий от энтропии источника. Чем более предсказуемы получаемые данные, тем лучше их можно сжать. Случайная независимая равновероятная последовательность сжатию без потерь не поддаётся.
